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Abstract

We explore in detail the role in euclidean 3D quantum gravity of quantum Born
reciprocity or ‘semidualization’. The latter is an algebraic operation defined
using quantum group methods that interchanges position and momentum.
Using this we are able to clarify the structural relationships between the
effective noncommutative geometries that have been discussed in the context
of 3D gravity. We show that the spin model based on D(U(su2)) for quantum
gravity without cosmological constant is the semidual of a quantum particle on a
3-sphere, while the bicrossproduct (DSR) model based on C[R2>�R]��U(su2)

is the semidual of a quantum particle on hyperbolic space. We show further
how the different models are all specific limits of q-deformed models with
q = e−h̄

√−�/mp , where mp is the Planck mass and � is the cosmological
constant, and argue that semidualization interchanges mp ↔ lc, where lc is
the cosmological length scale lc = 1/

√|�|. We investigate the physics of
semidualization by studying representation theory. In both the spin model and
its semidual we show that irreducible representations have a physical picture as
solutions of a respectively noncommutative/curved wave equation. We explain,
moreover, that the q-deformed model, at a certain algebraic level, is self-dual
under semidualization.

PACS numbers: 04.60.−m, 02.20.Uw, 02.40.Gh

1. Introduction

Whatever quantum gravity actually is, it must provide classical continuum geometry at
macroscopic scales and involve corrections at the Planck scale. In recent years, it has become
more widely accepted that these corrections should, at least at first order, be described by
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some kind of noncommutative geometry in which coordinate algebras are noncommutative
or ‘quantum’. A useful setting for exploring this idea is provided by 3D quantum gravity,
which is not a fully dynamical theory as in four dimensions but is a theory where many
computations can be done in detail. In particular, one should be able to see in this theory
exactly how noncommutative spacetime could emerge as a next-to-classical correction to
conventional commutative spacetime. At the moment there are several candidate models for
such noncommutative spacetimes even in the 3D setting. Our goal in this paper is to bring all
of these models into a single coherent picture, to explain precisely the relationships between
the models at the structural level and to explore their physical implications to some extent.
One important lesson we learn is that these relationships emerge only in the full theory with
cosmological constant, as different degenerations related by a Hopf algebraic duality operation
of ‘semidualization’. Since we are mainly interested in the algebraic relationships, we focus
on the Euclidean signature for simplicity, deferring the Lorentzian case to a sequel.

Of the various models, the most studied is the ‘spin model’, which is just the algebra
of angular momentum but viewed as a noncommutative spacetime coordinate algebra. Its
emergence as an effective spacetime for 3D quantum gravity without cosmological constant
was anticipated in [1, 2]. It was put forward in [3] in view of its quantum symmetry group
D(U(su2)), whose role in 3D quantum gravity was proposed in [4] and established in [5].
The explicit emergence of this noncommutative spacetime starting from the Ponzano–Regge
action was recently demonstrated in [6]. The q-deformation of this model, which, for q a
root of unity, is the state sum behind the Turaev–Viro model, describes 3D quantum gravity
with cosmological constant as controlled by the quantum group D(Uq(su2)). The q-deformed
local spacetime here is the quantum group Uq(su2) viewed as a noncommutative coordinate
algebra.

Other models of spacetime noncommutativity have been proposed, which do not have a
firmly established relation to quantum gravity. In this paper, we are particularly interested
in the ‘bicrossproduct models’ introduced in the euclidean form in [7] and in 3+1 form in
[8], related to the construction of what was called κ-Poincaré symmetry in [9]. The 3+1
bicrossproduct model is sometimes called ‘deformed special relativity’ but this is misleading
as there are several other deformations of special relativity under consideration, and we
therefore keep the more specific name. This model is of particular interest because it predicts
an energy-dependent speed of light which will be tested by time of flight data currently being
collected at the NASA Fermi gamma-ray space telescope (formerly GLAST) . Note, however,
that there is little evidence of a theoretical link between the bicrossproduct model and quantum
gravity. In particular, it was recently shown [10] that the (2+1)-dimensional version of the
bicrossproduct model (with a timelike noncommutative direction) does not arise directly in
3D quantum gravity. One of the upshots of the current paper is that bicrossproduct models do
have a precise role related to quantum gravity in its usual presentation, via our semidualization
map, or in physical terms by an interchange of position and momentum.

Also in the 1990s there was completely developed a q-deformed Minkowski space theory
in the form of 2 × 2 braided Hermitian matrices [11]. We will show that these various models
are all intimately related. To do this we use new results as well as results known to experts in
quantum groups, and explained, for example, in [12]. A subsidiary purpose of this paper is to
advertise some of those results to the quantum gravity community, where they are not so well
known (with notable exceptions, see e.g. [13]).

In order to give an overview of our findings we need to look at the physical constants
that enter quantum gravity, namely the gravitational constant G, Planck’s constant h̄ and the
cosmological constant � (we work in units where the speed of light is 1). In 3D gravity, the
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dimension of G is that of an inverse mass; the Planck mass is entirely classical and given by

mp = 1

G
. (1)

The cosmological constant has the dimension of inverse length squared and can be used to
define a cosmological length scale lc via

lc = 1√|�| . (2)

A second length scale is given by the Planck length, which takes the form

lp = h̄G = h̄

mp

. (3)

The dimensionless parameter q which plays the role of the deformation parameter in this paper
is related to the ratio of the two length scales lp and lc. More precisely it is given by

q = e−h̄G
√−�. (4)

Note that this expression is specific to the euclidean theory we are considering in this paper;
in the Lorentzian version one should replace � by its negative in the above expression, as
explained in [14].

In order to organize the various models and symmetries appearing in this paper, we begin
with the case where all three physical constants h̄,G and � are non-zero. The quantum group
D(Uq(su2)), with q defined as in (4), plays an important role in euclidean 3D quantum gravity
with a non-vanishing cosmological constant [15]. One can take the limit q → 1 in several
ways, with different physical interpretations. The first is to take h̄ → 0, keeping G and �

fixed. This gives an obviously classical gravity theory with cosmological constant, so that
h̄ = 0 but lc < ∞ and mp < ∞. We will not be interested in this first limit and will in
fact set h̄ = 1. A second way of taking the limit is to let G → 0, keeping h̄ and � fixed.
This gives a theory without gravitational self-interactions but with a cosmological constant,
so that lc < ∞ and mp = ∞; the symmetry quantum group of this model is U(so1,3) and
gravity is effectively a classical background on which a quantum particle propagates. A third
possibility is to take � → 0 while keeping h̄ and G fixed, leading to a quantum gravity theory
without cosmological constant i.e. mp < ∞ and lc = ∞; the symmetry quantum group is
now D(U(su2)). The joint limit G → 0 and � → 0 with h̄ �= 0 is a free quantum particle
propagating in euclidean space, controlled by the group E3 of euclidean motions.

None of these limits give the bicrossproduct models. Instead we need the semidualization
operation mentioned earlier. This comes out of quantum group theory and was used to
understand both the quantum double and bicrossproducts. In general, semidualization takes
any quantum group built from factors (in our case momentum and rotations) acting on some
other space (in our case position space) and swaps the roles of position and momentum. We
will elaborate this in detail later, but for now we only need to know that an original quantum
group H1��H2 acting on H ∗

2 semidualizes to a bicrossproduct quantum group H ∗
2 ��H1 acting

on H2, assuming there is an appropriate notion of dual cf [12, 16]. It is important to note that
not only do position and momentum get swapped, the quantum group also gets changed so
this is a change of model and not merely a (quantum) Fourier transform of the same model.

The quantum groups arising as limits of D(Uq(su2)) and their semiduals are listed in
table 1 for � � 0, together with the physical regimes to which they are associated. The
table also shows that the values of the physical constants associated with semidual models are
related by the exchange

mp ↔ lc. (5)
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Table 1. The quantum groups arising in 3D gravity for � � 0 and their semiduals. The diagonal
entries are self-dual, up to a quantum Wick rotation in the q �= 1 case.

3D gravity mp = ∞ mp < ∞
lc = ∞ U(e3) = U(su2)�<C[R3] D(U(su2)) = U(su2)�<C[SU2]
lc < ∞ U(so1,3) = U(su2)��U(su�

2) D(Uq(su2)) ∼= Uq(so1,3)

Semidual model mp = ∞ mp < ∞
lc = ∞ U(e3) = U(su2)�<C[R3] U(su2)⊗ U(su2) = U(so4)

lc < ∞ U(su2)��C[SU�
2 ] Uq(su2) ⊗ Uq−1(su2) = Uq(so4)

Interestingly, this duality does not involve h̄, since both mp and � are purely classical.
Moreover, still assuming � � 0, we note that we can write the deformation parameter q in (4)
as

q = e− h̄
mp lc . (6)

This is invariant under the duality (5). Thus, according to the table quantum gravity with
cosmological constant covered by D(Uq(su2)) is in a certain algebraic sense self-dual: it is
invariant under semidualization up to q-Wick rotation. This near self-duality is lost when
one takes the limits lc → ∞ and mp → ∞ separately, but reappears when both limits are
taken together: quantum theory of a free particle in euclidean space without cosmological
constant, controlled by E3, is structurally invariant under semidualization and self-dual in this
sense. Note that the requirement of self-duality or Born reciprocity requires that mp and lc are
either both infinite (the E3 flat space model) or both finite (the q-deformed model). Hence
self-duality as an approach to quantum gravity, as advocated in [17], forces the cosmological
constant to be non-zero.

Armed with this overview we can now outline the paper. Section 2 contains background
material on Poisson Lie groups, a summary of the Chern–Simons formulation of 3D gravity
and an explanation of the concept of semidualization for Hopf algebras.

Section 3 contains a detailed explanation and elaboration of the structural relations
between the Hopf algebras summarized in table 1. We describe each of the Hopf algebras
in detail, and give precise definitions of the various limits, semidualization maps and
isomorphisms that relate them. The general statement, made earlier in this introduction,
that semidualization swaps the role of positions and momenta is elaborated in this section and
illustrated by examples. An important role in this section is played by isomorphisms like the
one between D(Uq(su2)) and Uq(so1,3) (indicated by ∼= in table 1) which are ‘purely quantum
phenomena’ in the sense that they only hold when q �= 1. Taking the limit q → 1 on either side
of such an isomorphism gives different quantum groups, and this provides the mathematical
definition of the physical distinction between taking the limit lc → ∞ and the limit mp → ∞.
A key finding of this section is the result, already sketched above, that 3D quantum gravity
with cosmological constant is self-dual up to q-Wick rotation. We also explain why this near
self-duality fails in the limit q → 1. The reason is that a ‘purely quantum’ isomorphism
used in the near self-duality breaks down when q = 1 and therefore, when one takes the limit
q → 1, one can do it on either side of the isomorphism and will have different theories.

In section 4, we explore the physical meaning of semidualization in greater detail.
Ultimately we would like to understand this operation and the ‘self-duality’ under it in the full
q �= 1 theory, but the latter is at present too poorly understood at this level of detail. However,
with the aid of noncommutative geometry we do obtain a clear picture in the degenerate
cases. Our starting point for the physical interpretation in all cases is the fact that fundamental
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symmetries of physics enter quantum theoretical models via their representations. Thus the
Klein–Gordon, Dirac and Maxwell equations all determine irreps of the Poincaré group, and
the free Schrödinger equation determines an irrep of the Galilei group. This applies in our
models on the local ‘model spacetime’ on which our quantum symmetry groups act, which
is a part of the information in the theory (it has to be supplemented by patching information
according to the topology). Our strategy is therefore to study representations of a model and
its semidual, and to compare them.

Next, we have said that semiduality interchanges position and momentum. So on one
hand we have particles moving on position space and forming a representation of our quantum
symmetry group, and in the semidual model we have waves on what in the original model was
called momentum space. We can use Fourier transform to map over the physics of the semidual
model over to our original position space in order to compare with the original model, and we
do this. Thus our original position space has two kinds of fields on it. One is a set of particles
forming irreducible representations of the original quantum symmetry group and the other is a
second set of fields forming an irreducible representation of the semidual quantum symmetry
group. Note that not only are position and momentum swapped under semidualization but the
quantum symmetry group also changes as we have seen in table 1. Secondly, when the position
space is classical but curved its Fourier dual is a noncommutative space, and vice versa, i.e. we
need methods of quantum Fourier transform [12] and noncommutative differential geometry
in order to establish this picture.

It is instructive here to start with the trivial case of the group E3, which we do in section 4.1.
The semidual theory is also controlled by E3 but with position and momentum interchanged.
The structure is self-dual in this sense, with duality implemented by the R

3 Fourier transform,
but of course the actual physics of interest is not. Physical states are elements of irreps of E3,
but are realized quite differently on the two sides of the semiduality. As expected, an irrep of
E3 on one side consists of waves in position space, obeying a first-order differential constraint
and the wave equation. But on the other side it consists of monopole sections on spheres
of increasing radius in position space. The two ‘physical models’ here are equivalent under
Fourier transform and an exchange of position and momentum. We express the monopole
sections in terms of a linear vector-valued function obeying an algebraic constraint and show
that the algebraic constraint maps to the differential constraint under Fourier transform. This
itself is quite interesting and is explained in detail.

In sections 4.2 and 4.3, we look at the similar semiduality between the D(U(su2)) spin
model (3D quantum gravity without cosmological constant) and a quantum particle on SU2

with the action of SU2 × SU2 from the left and the right. We start in section 4.2 with
the D(U(su2)) model and U(su2) as the noncommutative or ‘fuzzy’ position space. The
group SU2 then plays the role of a curved momentum space. We show how to describe
irreps of D(U(su2)) in terms of vector-valued functions on this (curved) momentum space,
obeying an algebraic constraint. A quantum group Fourier transform [3, 18, 19] maps these
to solutions of noncommutative wave equations. For spins 0, 1/2 and 1 we recover the known
[3] noncommutative wave equations on the spin-model noncommutative (‘fuzzy’) R

3. Our
approach can in principle be extended to obtain fuzzy wave equations of all spin.

Then, in section 4.3, we turn to the semidual model and write the irreps of SU2 × SU2

in terms of vector-valued functions on SU2 (now interpreted as curved position space) which
obey a differential equation. This time, a noncommutative Fourier transform gives us a
picture of the irreps for this model as noncommutative monopole sections on fuzzy spheres in
noncommutative momentum space. The physics in this model is not the same as the physics in
the previous model of which it is the semidual. For example, the physical momentum values
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labelling the irreps are now discrete whereas before they were continuous. However, they
have a ‘similar form’ as a remnant of the near self-duality in the full q-deformed theory.

This exemplifies the general construction. The semidual model, by construction, has its
representations on a space which is the (quantum Fourier or Hopf algebra) dual of the space
where the original model has its representations (in the discussion above, the original model
is represented on H ∗

2 with Fourier dual H2, which is the space where the semidual model is
represented). So one always has one space where fields of both models live, which is functions
on position space for one model and functions on momentum space for the other. In order to
compare the two models further, we fix the interpretation of this space, as fields on position
space, say. Then irreps of one (quantum) group are realized by means of a wave equation
constraint and irreps of the semidual (quantum) group by means of an algebraic (projective
module) constraint. In the case of sections 4.2 and 4.3, the space for one model is the angular
momentum algebra and its dual is that of functions on SU2. However, unlike in the E3 case,
the (quantum) groups which are being represented in the two cases are different. Indeed, the
models are different: one is quantum gravity without cosmological constant and the other
is a quantum particle with cosmological constant. In the q-deformed case we return to the
quantum groups being algebraically (twisting) equivalent although still with different unitarity
∗-structure requirements. These remarks are developed further in section 5. The appendix
contains a summary of facts about forms and vector fields on Lie groups in our conventions.

Remark on units. Most of this paper is concerned with quantum-mechanical methods applied
on classical backgrounds or in quantum gravity. As a rule we therefore set h̄ = 1. To revert to
physical units the reader should insert h̄ every time a mass is expressed in terms of an inverse
length or a length in terms of an inverse mass.

2. Background: 3D gravity and quantum groups

Here we provide the background in both physics and mathematics that we need for our analysis.
After a short summary of Poisson Lie group theory we review classical 3D gravity, using the
language of Poisson Lie groups. We explain the role of quantum doubles in 3D quantum
gravity and review key features. Finally, we introduce the semidualization functor and study
some of its properties.

2.1. Poisson Lie groups

We write g for the Lie algebra of a Lie group G. When we require explicit generators we use a
basis in which the structure constants are purely imaginary. In the case of G being unitary, this
means that the generators are Hermitian, with real eigenvalues, simplifying our discussions of
representation theory and quantum mechanics. Additional results and conventions regarding
the differential geometry of Lie groups, which are needed later in this paper, are summarized
in the appendix.

A Poisson Lie group means a Lie group G which is a Poisson manifold, so there is a
Poisson bracket among smooth functions on G, such that the product map G × G → G is a
map of Poisson spaces. Here G × G has the direct product Poisson manifold structure. It is
known that such a Poisson bracket is equivalent to a map δ : g → g ⊗ g at the Lie algebra
level, called the Lie cobracket. It is just the adjoint of the Poisson bracket g∗ ⊗ g∗ → g∗

when restricted to g∗ ⊂ C∞(G). The pair (g, δ) with appropriate axioms is called a Lie
bialgebra and should be thought of as an infinitesimal quantum group. A Poisson Lie group is
quasitriangular if δξ = adξ (r) where r ∈ g ⊗ g obeys the classical Yang–Baxter equation and
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its symmetric part r+ is ad-invariant. It is called factorizable if it is quasitriangular and r+ is
non-degenerate as a map g → g∗. The associated Poisson Lie group is similarly factorizable
in this situation (either locally near the identity or, with appropriate technical assumptions,
globally). For any Lie bialgebra there is a double d(g) = g��g∗op which is factorizable as is
its Poisson Lie group d(G) = G��G∗op where G∗op is the opposite (with reversed product)
of the Lie group associated with the dual Lie bialgebra g∗. We will use � to denote the
combination ∗op. This group and G are both subgroups and the formula su = (s�u)(s�u)

defines the ‘dressing action’ � of G on G� = G∗op. The action � the other way is called the
‘backreaction’ or dual dressing action. These matters and the general �� theory which they
relate to were explained in [20], where one of us proved a theorem that Lie splitting data
exponentiate whenever one factor is compact. This theorem holds for general factorizations
not limited to the double or ‘Manin triple’.

Note that since d(G) is factorizable, its dual d(G)∗ is a Poisson Lie group that is
diffeomorphic to d(G), at least near the identity, via a map

Z : d(G)∗ = G∗��G → d(G)

given in this case canonically by multiplication in d(G). Under this map orbits in d(G)∗ under
the dressing action of d(G) map over to conjugacy classes in d(G) as spaces. We will use
the symplectic structure on these orbits, which are symplectic leaves for the Poisson bracket
on d(G)∗.

Quantum groups such as Cq[G] are quantizations of G with its standard Drinfeld–Sklyanin
Poisson bracket, defined for all semisimple Lie groups. Their duals Uq(g) deform the classical
enveloping algebras U(g) and can also, with a bit of care, be viewed as quantization of the
Drinfeld dual G∗ [21]. The quantization of d(G)∗ can be viewed as yielding D(Uq(g)) i.e.
the quantum double construction for quantum groups to be described in detail later.

2.2. Reminder of 3D gravity with point sources

We consider gravity in three dimensions coupled to matter in the form of a fixed number of
point particles and review the Chern–Simons formulation of the theory. For simplicity, we
restrict attention to three-dimensional manifolds of the form � × R, where � is a closed
two-dimensional manifold of genus γ and with n marked points, one for each point particle.
Concentrating on the euclidean version, we view gravity in a first-order form of a dreibein ea,
where a = 1, 2, 3, and a spin connection ω with values in so3. These data can be combined
together into a single g-valued gauge field A, where g is one of the following: the Lie algebra e3

of the euclidean group E3 (for vanishing cosmological constant), the Lie algebra sl2(C) ∼= so3,1

of SL2(C) (for negative cosmological constant) and the Lie algebra so4 of SU(2)×SU(2) (for
positive cosmological constant). In the following, we write G for any of the three associated
simply connected Lie groups and � for the cosmological constant. Introducing generators Pa

of translations and generators Ja of rotations, with commutation relations

[Ja, Jb] = ıεabcJc, [Pa, Jb] = ıεabcPc, [Pa, Pb] = ı�εabcJc, (7)

the spin connection can be expanded ω = −ıωaJ
a and the gauge field A is

A = −ı(eaPa + ωaJa).

In order to define an action principle for this connection one requires a non-degenerate,
invariant symmetric bilinear form k on the Lie algebra g. In terms of the generators above this
is given by

k(Ja, Pb) = −mp

8π
δab, (8)
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with all other pairings of generators giving zero. The standard Chern–Simons action for
the connection A, formulated with the symmetric form k, then reproduces the Einstein–
Hilbert action in the first-order formalism, as observed by Achucarro and Townsend [22]
and elaborated by Witten [23]. The constant mp/(8π), which is related to Newton’s constant
via (1), is not normally included in the symmetric form k but instead kept as a coupling constant
which multiplies the Chern–Simons action. However, since the non-degenerate symmetric
bilinear form ultimately determines the Poisson structure on the phase space of the theory, the
inclusion of the physical constants here makes it easier to keep track of them in subsequent
calculations.

The physical degrees of freedom of Chern–Simons theory are encoded in the G-valued
holonomies of the connection A as follows. To each puncture i we associate an element
ξ ∗
i ∈ g∗ encoding the mass mi and spin si of the particle i via

ξ ∗
i = ı(miP

∗
3 + siJ

∗
3 )

in a dual basis. Using the form (8) we obtain an associated element in g:

ξi = −ı
8π

mp

(miJ3 + siP3). (9)

The curvature of the connection A has a delta-function singularity at each puncture i with
coefficients lying in the adjoint orbit of ξi . Correspondingly, the holonomy around the
puncture i is forced to lie in the conjugacy class Ci containing eξi . The extended phase
space is

P̃ = G2γ ×
∏

Ci (10)

and the actual phase space is

P = {
(Aγ , Bγ , . . . , A1, B1,Mi) ∈ P̃

∣∣ [Aγ ,B−1
γ

] · · · [A1, B1]−1
∏

Mi = 1
}/

Ad(G).

Ai, Bi are holonomies around and through handles, while Mi are holonomies around our
punctures, all with reference to some arbitrary base point ∗. The reader may wonder here
where in the moduli space is the location of our n marked points at any given time. The
answer is that the physics is diffeomorphism invariant so to a large extent these are irrelevant.
Correspondingly, all that we retain from � in P is its topology. However, one can say a bit
more about ‘positions’ of the particles in the theory. To do this we need to consider the Poisson
structure of the theory.

The gauge groups G of the Chern–Simons formulation of gravity are all Poisson Lie
groups. The Poisson structure does not enter into the formulation of the gauge theory, but
plays an important role in describing the Poisson structure of its phase space, as we shall
explain. We focus on two here, both arising in the euclidean situation (later on we will suggest
two more). Without cosmological constant, we take

G = d(SU2) = SU2�<su∗
2 = E3 (11)

as a group but with a non-trivial Poisson bracket. Here SU2 here is regarded as a Poisson
Lie group with the zero Poisson bracket and we then take its double. Hence su∗

2 is a Lie
algebra with zero Lie bracket and hence we can also view it as an Abelian group, with the
Kirillov–Kostant Poisson bracket. With negative cosmological constant, we take

G = d(SU2) = SU2��SU�
2 = SL2(C) (12)

as a group but with a non-trivial Poisson structure. Here SU2 is a Poisson Lie group equipped
with its Drinfeld–Sklyanin bracket and we take its double.
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There is a natural Poisson structure on P̃ given by a certain ‘braided tensor product’
of those on each copy of G × G and on each conjugacy class [24] which descends to the
Atiyah–Bott one on P. In the Hamiltonian approach (see [25–27], and [15] in the context of
3D gravity), its quantization is the main step in constructing quantum gravity coupled to point
sources. Equivalently the braidings can be untangled and P̃ is Poisson equivalent to the direct
product of the Poisson structures on the conjugacy classes Ci and the Heisenberg-double ones
on γ copies of G × G [28]. We concentrate on the former, associated with the punctures. The
conjugacy classes Ci in G are the image under a bijection

Z : G∗ → G,

discussed in section 2.1, of the symplectic leaves of the Poisson structure on G∗. The
map is provided by an invariant, non-degenerate symmetric bilinear form at the level of
the associated Lie bialgebras (assuming again that we work with the associated connected and
simply connected Lie groups, or ignore certain global issues).

To proceed further, we make use of the fact that the Poisson Lie groups discussed so far are
all (special cases of) double crossproducts G = G1��G2 of Poisson Lie groups (this means that
they factorize into the two Poisson Lie subgroups and can be recovered from them by means
of a double semidirect product in which each G1 and G2 acts on the set of the other and with
the direct product Poisson structure). Then G∗ = G∗

1��G∗
2 (a direct product as groups and a

certain double-semidirect Poisson structure). One can describe the inverse images Z−1(Ci) in
these terms. If the Lie algebras g1 and g2 of G1 and G2 have generators Ja, Pa respectively (not
necessarily the same as in (7)), the dual Poisson Lie group has Lie algebra generators J ∗

a , P ∗
a ,

say, forming a dual basis to these (so that 〈J ∗
a , Jb〉 = 〈P ∗

a , Pb〉 = δab). The coefficients in
these bases form a local coordinate system for G∗ near the identity which we shall use, namely
ja = 〈−ıJa, ( )〉 is −ıJa as linear functions on g∗

1 and pa = 〈−ıPa, ( )〉 as linear functions on
g∗

2 . One may then write the Poisson bracket of G∗ explicitly among ja and pa. When restricted
to Z−1(Ci) they form the classical phase space coordinates associated with each conjugacy
class.

Also, G = G1��G2 acts canonically on the dual Poisson Lie group G∗
2 (say) and one

can form a crossproduct ‘Heisenberg–Weyl group’ (G1��G2)�<G∗
2. In physics this group

should be represented in the quantum algebra of observables, i.e. its enveloping algebra as a
quantization of the dual Poisson manifold

(
G∗

1��G∗
2

)
�<G2 as an extended phase space. Here

this copy of G2 has coordinates near the identity which we denote now by xa = 〈ıP ∗
a , ( )〉 as

linear functions on g2. One has then additional Poisson brackets for these variables among
themselves and with the previous ja, pa . We shall prove these facts at the Hopf algebra level
in section 3 and the Poisson Lie versions follow analogously.

To see all of this explicitly and also to understand the physical role of these ‘position
variables’ xa, we concentrate on the case of vanishing cosmological constant, so G = E3 =
SU(2)�<su∗

2. Our conventions for this group are spelled out in section 3.1; note that they
differ from those used in a similar context in [5, 29]. The group G∗ is simply the direct product
E∗

3 = su∗
2 × SU2 according to what we have said above. The map Z is

Z(�j, u) = (u, Ad∗
u(

�j)),

where we use our above bases for g∗
1 and g2 in each case: j = ı �j · �J ∗ is an element of g∗

1 = su∗
2

on the left and − 8π
mp

ıAd∗
u(

�j) · �P is an element of g2 = su∗
2 on the right3. Meanwhile, P ∗

a obey
the rescaled su2 commutation relations[

P ∗
a , P ∗

b

] = −ı
8π

mp

εabcP
∗
c .

3 For the Abelian Lie group su∗
2, the Lie algebra coordinates provide global coordinates on the group.

9
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In view of the non-degenerate symmetric bilinear form (8) on e3 we could identify

P ∗
a ↔ − 8π

mp

Ja, (13)

but will refrain from doing so to avoid confusion. Thus u = eıpaP
∗
a in terms of our local

coordinates for G∗
2 near the identity.

Let us focus on one conjugacy class C containing the element eξ with ξ parametrized as
in (9) (and the index i dropped). As we shall explain below, one can describe the preimage
Z−1(C) of a conjugacy class C in G as the subset of elements (j, u) ∈ G∗ with coordinates
obeying the further constraints

�p2 = m2, �j · �p = ms. (14)

The Poisson structure of G∗ gives rise to the brackets

{ja, jb} = εabcjc, {ja, pb} = εabcpc, {pa, pb} = 0, (15)

and it is easy to check that the combinations (14) are Casimirs, confirming that the conjugacy
classes are indeed the symplectic leaves of the Poisson structure (15). The Poisson brackets
suggest that we should think of pa as the particle’s momentum and ja as the particle’s ‘angular
momentum’ coordinates. However, the coordinates pa fail for the group element u when
| �p| = mp/4 and u = −1. Thus, in 3D gravity we should really interpret u as the particle’s
group-valued momentum. Momentum space is curved and has the structure of a non-Abelian
Lie group. This is a classical effect and means that, even classically, momentum addition is
noncommutative.

Geometrically, the space of vectors �p and �j obeying the constraints (14) parametrizes the
space of all lines in R

3, and we shall see next that we may think of these lines as the particle’s
worldline in an auxiliary euclidean space with the coordinates xa. Thus, if we describe a
symplectic leaf of G∗ over in G = E3 as a conjugacy class, we can redundantly parametrize it
in terms of elements (g, x) ∈ E3 that occur in C = {(g, x)−1 eξ (g, x)}. The image under Z
of the point (�j, u) in the physical phase space obeying (14) maps over redundantly to a set of
points (g, x) ∈ E3 such that Z(�j, u) = (g, x)−1 eξ (g, x). This set of points is described by
g ∈ G1 = SU2 and a coordinate vector �x for x = −ı�x · �P ∈ G2 = su∗

2 obeying

�j = mp

8π

(
Ad∗

u−1 − 1
)
(�x) + s

�p
m

, Adg−1(mJ3) = �p · �J .

Note that we have identified the translation part of the group E3 with the position in the
auxiliary euclidean space by fixing an origin. The limit

(Ad∗(u−1) − 1)�x ≈ 8π

mp

�x × �p

for small m/mp suggests, by analogy with the flat-space formula for angular momentum,
that we should interpret �x as the particle’s (spacetime) position. Further support for this
interpretation comes from the following geometrical consideration. Position coordinates
should act on momentum space by translation. Since, as we just saw, momentum space is
curved, such translations cannot commute if they are to be globally defined. One finds that

{xa, xb} = − 8π

mp

εabcxc, (16)

as well as

{ja, xb} = εabcxc, {xa, f } = − 8π

mp

ξR
a (f ) (17)

10
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for the Poisson brackets with the coordinates of G∗. Here f is any function on G∗
2 = SU2

and ξR
a is the right-translation vector field associated with the generator Ja of the Lie algebra

according to (A.2). The geometrical meaning of these brackets is that the Poisson brackets
of position coordinates are those of the su2 Lie algebra, and that they act on the momentum
manifold SU2 as generators of right multiplication. Note that the bracket (16) is also part of
the initial Poisson structure on G = E3 (with all other brackets vanishing in our case). The
conjugation action of E3 on conjugacy classes is the dressing action on symplectic leaves of
G∗; this is a Poisson action with the Poisson structure of G taken into account.

The above discussion reveals Poisson noncommutativity of position coordinates in 3D
gravity, but there are important caveats. First of all, we can change the coordinate vector �x to
�x + τ

�p
m

, where τ is an arbitrary real parameter, without changing the vectors �p and �j . This
is in agreement with our interpretation of �p and �j as parameters of a worldline: shifting the
position vector along the worldline does not change the worldline itself. The second, and
more important, caveat is that all of the above coordinates refer to the extended phase space P̃

and are therefore not well defined on the physical phase space P. One may interpret them as
referring to an auxiliary Euclidean space associated with the base point ∗ where the holonomies
start and end. However, to obtain the physical phase space we should divide by Euclidean
motions in that space. The Poisson brackets of physical quantities like traces of (products of)
holonomies have been studied in [30], but the relation with the above position coordinates has
not been clearly established. An alternative approach is to study universes with boundary. In
that case there is a preferred family of ‘centre-of-mass frame’ of the universe. By choosing
the base point to be associated with one such frame, the coordinates of the holonomies with
respect to the base point regain some of their physical meaning. This approach is pursued in
[29, 31, 32].

The above description of the phase of 3D gravity in terms of the Poisson Lie structures
associated with G is tailormade for the Hamiltonian approach to the quantization of Chern–
Simons theory [25–27]. In this approach, a key role is played by a Hopf algebra H which
is a quantization of the Drinfeld dual G∗. The Hilbert space of the quantized Chern–Simons
theory can then be described in terms of representation theory of H in a manner which is
analogous to the construction of the classical phase space as a quotient of the extended phase
space (10). Schematically (and referring to the above references for details) the quantization
of the extended phase space is a tensor product of γ copies of a representation R of H, which
is the analogue of the regular representation of a group (and the quantization of the Heisenberg
double Poisson manifold G ×G), and irreps Vi of H for each of the punctures (the quantization
of the conjugacy classes Ci). The Hilbert space of the quantized Chern–Simons theory is

H = Inv
(
R⊗γ ⊗

⊗
Vi

)
, (18)

where Inv denotes the H-invariant part of the tensor product. For the cases of Euclidean gravity
without (11) and with negative cosmological constant (12), the relevant quantum groups are
the quantum doubles D(U(su2)) and D(Uq(su2)) (q ∈ R). Details of the Hamiltonian
quantization programme for these cases can be found, respectively, in [15, 33].

2.3. Quantum double and semidualization theorem

Having motivated the role here of quantum groups in the picture, we now fix our notations
for these and recall the quantum double. Let H be a Hopf algebra over C, with coproduct
 : H → H ⊗ H , counit ε : H → C and antipode S : H → H . The particular real form
of interest is expressed by, in addition, a ∗ : H → H making H into a Hopf ∗-algebra. We
let H ′ be a suitable dual of H such that it is also a Hopf algebra and dually paired with H by

11
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a non-degenerate map 〈h, a〉. We refer to [12] for all further details. It is useful to use the
‘Sweedler notation’ h = h(1) ⊗ h(2).

The quantum double D(H) = H �� H ′op is built on the vector space H ⊗ H ′ with new
product

(h ⊗ a) · (g ⊗ b) = hg(2) ⊗ ba(2)〈g(1), a(1)〉〈Sg(3), a(3)〉,
where h, g ∈ H, a, b ∈ H ′, and the tensor product coproduct [16, 34]. This Hopf algebra has
a canonical action [12] on H

h�g = h(1)gSh(2), a�h = 〈a, h(1)〉h(2)

and induces on it the canonical braid statistics

�(h ⊗ g) = h(1)gSh(2) ⊗ h(3)

with respect to which H is �-commutative. It also induces braid statistics on any other objects
covariant under D(H). There is a canonical action of D(H) on H which we can therefore
view as a ‘noncommutative space’ (assuming the Hopf algebra H is noncommutative). The
dual of the quantum double is H ′��H cop which means the tensor product as an algebra (its
coproduct is twisted). It contains the ‘noncommutative position algebra’ H which ties in with
our semiclassical picture above.

If H is cocommutative i.e. H ′ commutative we have D(H) = H�<H ′ with

(h ⊗ a)(g ⊗ b) = hg(1) ⊗ a�g(2) · b, a�g = a(2)〈g, a(1)Sa(3)〉
i.e. the semidirect product by the right coadjoint action corresponding to the left adjoint
coaction of H ′ on itself, see [12] for the Hopf algebra formalism.

2.4. Semidualization

The general construction of which the quantum double is part is a ‘double crossproduct’
H = H1 �� H2 of a Hopf algebra factorizing into two sub-Hopf algebras. Factorizing
means that the map H1 ⊗ H2 → H , given by viewing in H and multiplying there, is an
isomorphism of linear spaces. In this situation one deduces actions � : H2 ⊗ H1 → H1 and
� : H2 ⊗ H1 → H2 of each Hopf algebra on the vector space of the other. These are defined
by (1 ⊗ a) · (h ⊗ 1) = (a(1)�h(1) ⊗ a(2)�h(2)) for the product of H viewed on H1 ⊗ H2. The
coproduct of H1��H2 is the tensor one given by the coproduct on each factor and there is a
canonical action of this Hopf algebra on the vector space of H1 by

(h ⊗ a)�f = h · (a�f ), ∀f ∈ H1, h ⊗ a ∈ H1 ⊗ H2.

This in fact respects the coalgebra structure of H1 and hence provides in a canonical way a
covariant right action of H1��H2 on H ′

1 as an algebra. Explicitly, the right action of H2 on H ′
1

is defined by

〈φ�a, h〉 = 〈φ, a�h〉, ∀φ ∈ H ′
1, a ∈ H2, h ∈ H1,

and in these terms the right action of H1��H2 on H ′
1 is

φ�(h ⊗ a) = 〈φ(1), h〉φ(2)�a.

In this case, we may form the crossproduct algebra by this action

(H1 �� H2)�<H ′
1. (19)

Also in this situation we may dualize one of the factors, say replacing H1 by H ′
1. This gives

a new Hopf algebra H2��H ′
1 (the semidual of H) which then acts covariantly from the left on

H1 as an algebra. The product and coproduct are

12
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(a ⊗ φ)(b ⊗ ψ) = ab(1) ⊗ φ�b(2)ψ, (a ⊗ φ) = (a(1) ⊗ a(2)(0)φ(1))⊗(a(2)(1) ⊗ φ(2))

a�h = 〈a(0), h〉a(1), h ∈ H1, a, b ∈ H2, φ, ψ ∈ H ′
1,

where the coaction on a ∈ H2 is defined in terms of our original �. Its canonical left action on
H1 is

(a ⊗ φ)�h = a�h(1)〈φ, h(2)〉.
This is the ‘semidualization functor’ that applies to Hopf algebras that factorize [12, 16]. In
this case we have a crossproduct algebra by the action on H1:

H1>�(H2��H ′
1). (20)

Lemma 2.1. The two algebras (19) and (20) are the same when built in the vector space
H1 ⊗ H2 ⊗ H ′

1. Hence there is one algebra

A = (H1 �� H2)�<H ′
1 = H1>�(H2��H ′

1)

independently of the point of view, with

H1 �� H2 ⊂ A ⊃ H2��H ′
1

i.e., containing both the double crossproduct and the bicrossproduct. Moreover, A ⊃
H1�<H ′

1 = H1>�H ′
1 the Heisenberg–Weyl algebra.

Proof. This is automatic from the definition of the semidualization process when one goes
into how this is actually defined by dualizing the involved actions and coactions. Indeed, the
product of A computed the first way is

(h ⊗ a ⊗ φ) · (g ⊗ b ⊗ ψ) = (h ⊗ a) · (g ⊗ b)(1) ⊗(φ�(g ⊗ b)(2)) · ψ

= (h ⊗ a) · (g(1) ⊗ b(1))⊗〈φ(1), g(2)〉(φ(2)�b(2)) · ψ

= h · (a(1)�g(1))⊗(a(2)�g(2)) · b(1) ⊗〈φ(1), g(3)〉(φ(2)�b(2)) · ψ.

Meanwhile, computing the product the other way gives

(h ⊗ a ⊗ φ) · (g ⊗ b ⊗ ψ) = h · ((a ⊗ φ)(1)�g)⊗ (a ⊗ φ)(2) · (b ⊗ ψ)

= h · ((a(1) ⊗ a(2)(0)φ(1))�g)⊗ (a(2)(1) ⊗ φ(2)) · (b ⊗ ψ)

= h · (a(1)�g(1))〈a(2)(0)φ(1), g(2)〉⊗ a(2)(1)b(1) ⊗ (φ(2)�b(2)) · ψ
= h · (a(1)�g(1))〈a(2)(0), g(2)〉〈φ(1), g(3)〉

⊗ a(2)(1)b(1) ⊗ (φ(2)�b(2)) · ψ,

which is the same on using the definition of the coaction on H2. Also, the product restricted
to h ⊗ φ = h ⊗ 1 ⊗ φ is

(h ⊗ φ) · (g ⊗ ψ) = hg(1) ⊗ 〈φ(1), g(2)〉φ(2)ψ,

which can be viewed either way H1�<H ′
1 = H1>�H ′

1 as a crossproduct of the coregular
representation (in the finite-dimensional case it is the matrix algebra End(H1) [12]. �

This gives a concrete rotation–momentum–position algebra way of thinking about
semidualization. The three form a single algebra. If we think of H1,H2 as momentum,
rotations we see the double crossproduct acting on H ′

1 as positions, and if we think of H2,H
′
1

as rotations, momentum, we see the bicrossproduct acting on H1 as positions. This is a
version of ‘quantum Born reciprocity’ (interchanging position and momentum) which is a
little different from the original motivation for bicrossproducts as quantum phase spaces, but
based on entirely the same Hopf algebra dualization constructions namely to interchange H1

13
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with H ′
1. If one looks only at the position–momentum sector then this is the usual Heisenberg–

Weyl algebra (sometimes called the ‘Heisenberg double’) which is symmetric between position
and momentum so already admits the quantum Born reciprocity.

Finally, we can do the exact same constructions with the roles of H1,H2 swapped. Thus,
there is similarly a canonical right action of H1��H2 on the coalgebra of H2 and its dualization is
a canonical left action on the algebra of H ′

2. We can form a crossproduct by this. Alternatively,
we can use the left action of H1 on H ′

2 and a right coaction of H ′
2 on H1 corresponding to � to

define a bicrosspropduct H ′
2��H1 which acts from the right on the algebra of H2. As before,

we have

B = H ′
2>�(H1��H2) = (H ′

2��H1)�<H2

as an algebra

H1��H2 ⊂ B ⊃ H ′
2��H1

within which the semidualization takes place. It contains H ′
2>�H2 = H ′

2�<H2. We
will actually use the A-version of semidualization, given in lemma 2.1, in order that the
bicrossproducts act naturally from the left, but this means that the double crossproduct acts
naturally from the right. In the primary 3D quantum gravity models we prefer the B-version
so that the double acts naturally from the left, but then the bicrossproduct acts from the
right. To study their semiduals we flip conventions and use the A-model so that it is the
bicrossproducts which act from the left (this is because physicists tend to avoid right actions
in actual computations).

In particular, if one applies the second version of the semidualization (with dualizing
algebra B) to D(H) = H �� H ′op one has the canonical Schrödinger left action on
(H ′op)′ = H cop = H as an algebra as mentioned above. According to the above, we
also have

B = H>�D(H) = M(H)�<H ′op ∼= (H cop ⊗ H)�<H ′op

for some ‘mirror product’ bicrossproduct

M(H) = H cop��H ∼= H cop ⊗ H,

which as stated turns out to be isomorphic to the tensor product Hopf algebra [16]. In effect,
the quantum Mach principle or semidualization (used the other way) converts something trivial
over to something non-trivial, namely the quantum double, and was our way to construct it.
The action of H cop ⊗ H on H ′op from the right is

a�(h ⊗ g) = 〈h, a(1)〉a(2)〈Sg, a(3)〉
when one traces through the explicit constructions and isomorphisms. Note that H ⊆ D(H)

appears in H cop ⊗ H embedded on the diagonal via the coproduct. Its right action is therefore
evaluation against the left adjoint coaction of H ′ on itself. Likewise, if we use the A-version
in order to have a left action here, and start with D(H) = H ′op��H acting from the right on
Hcop as an algebra, then the semidual is H��H cop ∼= H ⊗ H cop acting on H ′op from the left
by

(h ⊗ g)�a = 〈Sh, a(1)〉a(2)〈g, a(3)〉.
All operations in these formulae refer to the underlying Hopf algebra H or its dual.
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U(sl2)∼=U(su2) U(su2)
acts on [SU2 ]

∼= q = 1 ∼= q = 1

S

S

q-def q-defq-def

S

S
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q-def

mP < ∞, lC = ∞ mP = ∞, lC < ∞

mP = ∞, lC < ∞ mP < ∞, lC = ∞

mP = ∞, lC = ∞

U(su2) < [ ]
acts on [ 3]

flat spacetime model

curved mom. curved posn.

curved posn. curved mom.

mP < ∞, lC < ∞

U(su2) < [SU2]
acts on U(su2)

spin model

Uq(sl2) ∼= Uq(su2) Uq(su2)
acts on q[SU2 ] ∼= Bq[SU2]

≈ q = 1

Uq(su2) q[SU2 ]
acts on Uq(su2)

U(su2) [SU2 ]
acts on U(su2)

bicrossproduct model

Uq(su2) q[SU2]op
∼=Uq(su2)·<Bq[SU2]

acts on Uq(su2)

Uq(su2) Uq(su2)cop
∼=Uq(su2)⊗Uq(su2)cop

acts on q[SU2]op

U(su2) U(su2)
∼=U(su2)⊗U(su2)

acts on [SU2]

3

Figure 1. Overview of isometry quantum groups in euclidean 3D quantum gravity models (left)
and their semiduals (right). Here SU2 is a 3-sphere, SU�

2 is hyperbolic space, U(su2) and U(su�
2)

are noncommutative versions of R
3. We denote semidualization by S.

3. Structure of the models as limits of 3D quantum gravity

After the above background, we describe in detail potentially eight noncommutative spacetime
models for the eight entries in table 1. At this stage we are interested in the structure of the
symmetry algebras of the models and at this level describe isomorphisms which reduce our
models to only six. The more detailed situation is shown in figure 1, as we shall explain in
this section.

We will also introduce explicit notations for our examples. We clarify first an important
piece of notation. In physics, the word momentum can be used in two ways: (a) with reference
to a point in momentum space �p ∈ R̃

3 or (b) as an observable, which means its components
Pa are particular functions on momentum space. When Lie symmetries are realized they
usually appear in the second form. For example U(R3), with generators Pa acting on the
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algebra C[R3] of functions on position space by Pa = −ı ∂
∂xa

, is also the polynomial algebra

C[P1, P2, P3] = C[R̃3] of functions on momentum space. In this point of view, P1 is an
infinitesimal element of R

3 in the direction (1, 0, 0) etc; it is a tangent vector in the Lie algebra
of R

3 and not a function on it. Rather, each Pa is a function on R̃
3. This is clearer perhaps in the

non-Abelian case where U(g) acts naturally by vector fields on C∞(G), so elements of g here
are tangent not cotangent vectors. At the same time, they are functions on cotangent space.
Finally, although we will not often make this distinction, one can think of �p = (p1, p2, p3)

not as an actual numerical point but as a generic point, i.e. as a placeholder for actual but
unspecified points in momentum space R̃

3. As soon as one does this, pa becomes a coordinate
function on R̃

3, i.e. acquires the same status as Pa. Thus, it will often be useful (and would be
normal in physics) to mix notations in this way in order to avoid a proliferation of symbols.

3.1. E3 = SU2�<R
3—free particle without cosmological constant (flat spacetime)

We actually work with the double cover of the euclidean group of motions in three dimensions:

E3 = SU2 � R
3, (21)

where we view SU2 with the zero Poisson bracket and R
3 denotes the translation group with

zero Lie bracket and zero Poisson bracket. The vanishing of the Lie bracket (commutativity
of spacetime translations) amounts to taking the cosmological constant to be zero (or, by (2),
lc = ∞) and the zero Poisson bracket on E3 corresponds to a vanishing gravitational coupling
constant (or, by (1), mp = ∞). The action of SU2 is by rotations which can be expressed
concisely as

(g, a)(h, b) = (gh, Ad∗
h(a) + b), g, h ∈ SU2, a, b ∈ su∗

2, (22)

where we identify our Abelian translation group as R
3 = su∗

2. We denote as before the
generators of su∗

2 by Pa. We assume these generators to be proportional to the duals J ∗
a of

the su2 generators Ja, but not necessarily equal to them. The reason for this is that different
normalizations of Ja relative to Pa are required in different contexts, see e.g. (8) in relation
to 3D gravity. The upshot is that Pa form an orthogonal basis of su∗

2 and that an element
a ∈ su∗

2 can be written in terms of a coordinate vector �a as a = −ı �a · �P in our conventions.
The coadjoint action here is a right action defined by Ad∗

h(a) : k �→ a(h(k)h−1), for k ∈ su2,
which we can also write by abuse of notation as Adh−1(�a). In terms of the coordinate vectors
�a, �b ∈ R

3 for the su∗
2-elements a and b the above multiplication law is thus

(g, �a)(h, �b) = (gh, Adh−1(�a) + �b). (23)

By definition we also view the generators Pa as coordinates on momentum space, generating
its commutative coordinate algebra. The momentum space itself is the Lie algebra su2 as
another copy of R

3.
The Lie algebra e3 = su2�<R

3 = su2�<su∗
2 has rotation generators Ja and translation

generators Pa with commutation relations

[Ja, Jb] = ıεabcJc, [Pa, Jb] = ıεabcPc, [Pa, Pb] = 0. (24)

Note that this Lie algebra is not a classical double since su∗
2 here has the zero Lie cobracket,

and its enveloping algebra U(e3) = U(su2)�<U(su∗
2) = U(su2)�<C[R̃3] is not a quantum

double. It is, however, still an example of our more general double crossproduct. Hence there
is a canonical action on the position space algebra C[R3]. It is the local spacetime in the
model and we see that it is flat. Explicitly, the actions of the Lie algebra generators on scalar
functions f (�x) on position space are defined by

Pa = −ı
∂

∂xa

, Ja = −ıεabcxb

∂

∂xc

. (25)
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The physics which this theory describes has a model spacetime flat R
3, which means that in

each patch of � × R the motion is that of a free particle on R
3. There can still be a nontrivial

e3 connection but this is now everywhere flat regardless of the matter but with nontrivial
transitions between patches, i.e. the particles respond to the background geometry but they
do not act as sources for it. In short, the model is the quantum theory of a particle on a flat
background, possibly nontrivial.

The semidual model with flipped conventions is given by

E3 = SU2 � R̃
3,

where R̃
3 has zero Lie bracket and zero Poisson bracket, which we identify with su2 as a vector

space. Its enveloping algebra is U(su2)�<U(su2) = U(su2)�<C[R3] and acts naturally on
the momentum coordinates C[R̃3]. Clearly we can Fourier transform from functions on R

3 to
functions on R̃

3 and back and thereby convert a construction in one model to one or the other
where it will have a different interpretation. The algebraic structure, however, is self-dual
under semidualization.

3.2. D(U(su2))—quantum gravity without cosmological constant (spin spacetime)

Next we take SU2 with its zero Lie cobracket and su∗
2 the dual Lie bialgebra, which means

with the zero Lie bracket and Kirillov–Kostant Lie cobracket. The classical Poisson Lie
group is the double d(SU2) = SU2�<su∗

2 = E3 again but this time with a non-trivial Poisson
bracket. Its quantization is the quantum coordinate algebra of the quantum symmetry group
D(U(su2)) = U(su2)�<C[SU2], where C[SU2] is the coordinate algebra on the momentum
space SU2 and is described by a matrix of generators t i j dually paired with generators Ja of
U(su2) by

〈
t i j , Ja

〉 = 1
2σa

i
j . Here σa are the usual Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −ı

ı 0

)
, σ3 =

(
1 0
0 −1

)
. (26)

We describe the quantum double here in an algebraic form and with a parameter λ that
expresses the ‘flattening’ of the momentum space SU2 to R

3 as λ → 0. In the context of
3D quantum gravity one should take λ = 1/mp. The algebraic quantum double then has
generators Ja of su2 and generators t i j of the coordinate algebra of SU2 with relations[

t i j , Ja

] = 1
2

(
σa

i
l t

l
j − t i lσa

l
j

)
, [Ja, Jb] = ıεabcJc

Ja = Ja ⊗ 1 + 1 ⊗ Ja, tij = t i l ⊗ t l j .

We now change variables from t i j to P0,P1,P2,P3 defined via

t i j = P0δ
i
j + ı

λ

2
Pcσc

i
j =

(
P0 + ı λ

2P3 ı λ
2 (P1 − ıP2)

ı λ
2 (P1 + ıP2) P0 − ı λ

2P3

)
.

The structure in terms of the new generators is

P2
0 +

λ2

4
�P2 = 1, [P0, Ja] = 0, [Pa, Jb] = ıεabcPc,

P0 = P0 ⊗P0 − λ2

4
Pa ⊗Pa, Pa = Pa ⊗ 1 + 1 ⊗Pa − λ

2
εabcPb ⊗Pc,

where the det t = 1 relation appears now as the sphere relation for SU2 as a 3-sphere in R
4,

with �P the local coordinates of a patch of SU2 containing the group identity. Here Pa are

regarded as the free variables valid for | �P| � 2/λ and P0 =
√

1 − λ2

4
�P2

in this patch. There
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is another patch covering the lower half with P0 � 0. In either patch, we see that SU2 as
momentum space for this model is a curved version of R

3 obtained in the limit λ → 0. Note
that the two patches above are not open sets, one should really use open patches and a third
patch around the equator to see the limit topologically.

We have a canonical action of the quantum double on U(su2) which means on the flat but
noncommutative spacetime algebra

[xa, xb] = ıλεabcxc, (27)

where we recall that λ is 1/mp i.e. proportional to the Planck length lp in the context of 3D
gravity (3). This is the enveloping algebra U(su2) with rescaled generators. The action of the
quantum double on xa is

Ja�xb = ıεabcxc, P0�xa = xa, Pa�xb = ıδab,

see [3].
Finally, the �P coordinate system on momentum space SU2 can be replaced by a local

coordinate system �p valid near the group identity. Here an element of SU2 is written as e
ı
2 λ �p·�σ

in terms of a vector of Pauli matrices and valid for |p| < 2π/λ. The relation between the two
coordinate systems is

Pa = pa

sin(λ| �p|/2)

λ| �p|/2
, P0 = cos(λ| �p|/2).

Note that this second ‘Lie algebra’ coordinate system is degenerate at | �p| = 2π/λ as all
directions of �p then lead to the same point −1 ∈ SU2. The noncommutative geometry of the
model can be considerably developed [19, 35]. In particular, in any reasonable completion
of the position coordinate algebra to include exponentials, the elements ζ = eı �p·�x with
| �p| = 2π/λ are non-trivial plane waves (of momentum −1) obeying ζ 2 = 1 [19]. This means
that noncommutative spacetime is a kind of double cover of noncommutative R

3 in the same
way that SU2 is a double cover of SO3.

This model describes quantum gravity without cosmological constant in the sense that
compared to the model of section 3.1 the particles at each puncture of � act as sources for the
implicitly defined ‘connection’. This is achieved by switching on a finite mp or nonzero Newton
constant G. The model spacetime is noncommutative and the ‘connection’ is implicitly defined
by its quantum group ‘holonomy’ so is in that sense ‘quantum’. It is actually the combination
lp = h̄/mp that enters so one could view the model equivalently as switching on h̄ for fixed G. In
this way, the theory describes quantum gravity coupled to the sources in contrast to section 3.1
where the background geometry on � × R remains classical and unaffected by the sources.

3.3. S̃O4—free particle with positive cosmological constant (SU2 spacetime) as semidual of
quantum gravity without cosmological constant

Next we apply the semidualization construction to the previous quantum double spin model.
Due to our analysis for any quantum double we obtain, in the present case, the quantum group

U(su2)�<U(su2)
cop ∼= U(su2)⊗ U(su2)

cop = U(su2 ⊕ su2) = U(so4),

which is actually a classical enveloping algebra, acting covariantly on the classical position
algebra C[SU2] by left and right translations. Note that in terms of the generators of rotations
and ‘translations’ on the left we have commutation relations

[Ja, Jb] = ıεabcJc, [Ja, Pb] = ıεabcPc, [Pa, Pb] = ıλεabcPc, (28)

where in this model λ = 1/lc. Its action on C[SU2] is with Ja acting as the vector fields for
conjugation and Pa acting as the vector fields for right translation. We can choose coordinates
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on SU2 with parameter λ as in section 3.2, just now SU2 is position space, with Pa becoming
usual differentiation on flat R

3 as λ → 0. This represents a fairly perverse but physical way
of thinking about left and right translations on SU2 which we will develop further.

We see that the semidual of our flat but noncommutative spacetime and quantum gravity
system is a system with curved but classical model spacetime SU2. At the group level the
euclidean group is now deformed to SU2�<SU2 which is isomorphic to SU2 × SU2 and we
view this as a double cover S̃O4. In terms of the notation (A.2), the left copy of SU2 acts by the
vector fields ξL and the right copy by the vector fields ξR on functions of the position space
SU2. The theory deforms the flat model of section 3.1 in now describing a quantum particle
on a classical background with curvature (due to the cosmological constant) but insensitive to
the sources. The motion looks locally like free motion on 3-spheres in each patch of � × R

with S̃O4 transitions.
This model is not self-dual as it is clearly very far from the previous model in section 3.2.

Thus, a construction in quantum gravity but without cosmological constant maps over under
semidualization to a construction on classical SU2. In physical terms of the original model
this SU2 is the curved momentum space. In the dual theory it is the curved position space.
Conversely, a classical particle in the semidual theory means a particle on SU2 with SU2 ×SU2

isometry group. It maps back to something else in the noncommutative spacetime of the
quantum gravity model. We shall give details of both sides in section 4.

3.4. ˜SO1,3—free particle with negative cosmological constant (hyperbolic spacetime)

Here we take, in place of E3, the classical group

SL2(C) = SU2��SU�
2

but with the zero Poisson bracket. Its structure is a double crossproduct of SU2 and a certain
solvable group SU�

2 = R
2>�R occurring in the Iwasawa factorization. Each element of

SL2(C) may be uniquely factorized in the form(
a b

c d

)
=

(
x −ȳ

y x̄

) (
w z

0 w−1

)
, |x|2 + |y|2 = 1, w > 0, x, y, z ∈ C.

Such a matrix is in SL2(C) and, conversely, given a matrix as on the left, we define

w =
√

|a|2 + |c|2, x = w−1a, y = w−1c, z = w−1(āb + c̄d).

Note that the group SU�
2 and the Iwasawa factorization can be understood in Poisson Lie terms

[20]. Thus, the former is the dual of SU2 as a Poisson Lie group with its Drinfeld–Sklyanin
Poisson bracket and SL2(C) is the classical double of SU2 as a Poisson Lie group, but in the
present model we use only the resulting SL2(C) group and factorization structure, taking it
with zero Poisson structure.

There is a canonical right action of SL2(C) from the classical group double crossproduct
theory on the set SU�

2 as a classical but curved position space,

b�(g��a) = (b�g) · a.

Using the above we can compute � explicitly as(
w z

0 w−1

)
�

(
x −ȳ

y x̄

)
=

(
w′ z′

0 w′−1

)
w′ =

√
w−2|y|2 + |wx + zy|2, w′z′ = (wx̄ + z̄ȳ)(zx̄ − wȳ) + w−2x̄ȳ.

In this way, SL2(C) becomes the isometry group of this position space with its natural
hyperbolic metric, and the double crossproduct structure exhibits it explicitly as a curved
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position space analogue of the euclidean group of motions. SU2 acts as ‘deformed rotations’
� and ‘deformed momentum’ SU�

2 acts by group right translation. In its internal structure,
SU2 also acts on momentum by the same deformed action � but as SL2(C) is not a semidirect
product, there is also a back-reaction(

w z

0 w−1

)
�

(
x −ȳ

y x̄

)
= w′−1

(
wx + zy −w−1ȳ

w−1y wx̄ + z̄ȳ

)
of momentum on rotations as a result of the curved space.

At the algebraic level we have a left action of U(sl2) = U(d(su2)) = U(su2)��U
(
su�

2

)
on C[SU�

2 ] as the commutative coordinate algebra of functions on the classical but curved
position space SU�

2 . Explicitly, the generators of sl2 as isometry Lie algebra are Ja as usual
for rotations and Pa, say, for ‘translations’, with nonzero commutation relations

[Ja, Jb] = ıεabcJc, [P3, Pi] = ıλPi,

[Ja, Pb] = ıεabcPc + ıλδb3Ja − ıλδabJ3,
(29)

where i = 1, 2 and λ = 1/lc in this model. The parameter ensures that we recover e3 as
λ → 0. Note that the quantum group in this example is a classical enveloping algebra and
therefore is not a quantum double of anything. Rather, it is the exponentiation of a classical
Lie algebra double with zero cobracket in line with what we have explained above.

Finally, since the above action of SL2(C) on SU�
2 is quite complicated, it can be helpful to

write the latter in a more suitable form as the upper half of the two-sheeted hyperboloid in 3+1
Minkowski space. This is also topologically R

3 and comes with its own natural hyperbolic
metric induced from the inclusion. The group structure is not manifest in this description,
however. To give the change of coordinates we write elements of Minkowski space as 2 × 2
Hermitian matrices x, with determinant 1 for the unit hyperboloid. An element g ∈ SL2(C)

acts on such a matrix via x �→ g†xg. We identify the unit matrix (the point (1, 0, 0, 0) in usual
time–space form) here with the unit matrix of SU�

2 . Our factorization of SL2(C) is exactly
into the subgroup SU2 of spatial rotations that leaves this point invariant and the subgroup
of boosts which is SU�

2 and acts by (in the conventions above) right multiplication. Thus a
general point of SU�

2 corresponds to a 2 × 2 Hermitian matrix in the upper half hyperboloid
by (

w z

0 w−1

)
↔

(
w z

0 w−1

)† (
1 0
0 1

)(
w z

0 w−1

)
=

(
w2 wz

wz̄ w−2 + zz̄

)
.

One can coordinatize SU�
2 with coordinates of length dimension in a variety of ways, for

example

w = 1 + λX 3, z = λ(X 1 + ıX 2), X 3 > −1

λ
.

Then the group structure appears as a modified addition law of R
3, see [12]. Equipped with

a compatible Riemannian metric, hyperbolic space is a curved deformation of R
3, becoming

flat in the limit λ → 0. One also has Lie algebra coordinates xa with matrix eı�x· �ρ for certain
matrices ρa . The exponential map here is a bijection with R

3.
The model has a similar physical interpretation to that of section 3.3, i.e. quantum particles

on a classical background with curvature (due to the presence of a cosmological constant) but
uncoupled to the sources. The difference is that the motion is locally described by motion on
hyperbolic 3-space with SL2(C) transitions between patches.
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3.5. U(su2)��C[SU�
2 ]—semidual of free particle in hyperbolic space (bicrossproduct

spacetime)

Next, we apply the semidualization construction to the preceding model with spacetime
curvature. Once again, this interchanges the role of position and momentum at a Hopf-
algebraic level. Hence space becomes the flat but noncommutative ‘bicrossproduct spacetime’
whose coordinate algebra is the enveloping algebra U(su�

2), i.e. with non-zero brackets

[xi, x3] = ıλxi (30)

for i = 1, 2, where the deformation parameter λ should be interpreted as 1/mp in this model.
Meanwhile, rotations remain unchanged as SU2 or U(su2) at the Hopf algebra level while
the enveloping algebra of momentum is the commutative algebra of functions on SU�

2 . This
is the bicrossproduct euclidean quantum group. Its dual can be viewed as quantizing the
bicrossproduct Poisson Lie group SU2��su2 where su2 is an additive group, with a certain
bicrossproduct Poisson Lie structure [18]. The classical group here is once again E3 but with
a different Poisson Lie group structure than in some of the above models.

To give details, in order to have all quantum groups left-acting, we again flip conventions
to a conjugate factorization SL2(C) = SU�

2 · SU2, given by(
a b

c d

)
=

(
w 0
z w−1

) (
x y

−ȳ x̄

)
, |x|2 + |y|2 = 1, w > 0, x, y, z ∈ C,

w =
√

|a|2 + |b|2, x = w−1a, y = w−1b, z = w−1(āc + b̄d).

This implies a Hopf algebra factorization U(sl2) = U(su�
2)��U(su2) as a version of the

classical cosmological model above. Semidualization using the A-version of the theory (in
the terminology of section 2.6) then gives a new Hopf algebra U(su2)��C[SU�

2 ] which acts
canonically on U(su�

2). This can be computed explicitly cf [12, 18]

[Ja, Jb] = ıεabcJc, [Pa, J3] = ıεa3cPc, [P3, Ja] = ıε3abPb

[Pa, Jb] = ı

2
εab3

(
1 − e−2λP3

λ
− λ

(
P 2

1 + P 2
2

))
+ ıλεac3PbPc,

giving a nonlinear action of su2 on the manifold of SU�
2 . This manifold can be naturally

identified with hyperbolic space, as explained at the end of section 3.4. Meanwhile, as
indicated in the bicrossproduct notation, the coalgebra also has a semidirect form

Ji = Ji ⊗ 1 + e−λP3 ⊗ Ji + λPi ⊗ J3, Pi = Pi ⊗ 1 + e−λP3 ⊗ Pi

for i = 1, 2 and the usual additive ones for P3, J3.
The action of this quantum group on the bicrossproduct position algebra U(su∗

2) is

Ja�xb = ıεabcxc, Pa� : f (x) :=:
∂

∂xa

f (x) :

where : : denotes normal ordering of an ordinary polynomial with x3 to the right.

3.6. D(Uq(su2))—quantum gravity with cosmological constant (q-hyperbolic spacetime
Bq[SU2])

Finally, we can follow the same ideas but now in quantum gravity with cosmological constant,
where there are no classical groups or spaces on either side of the semidualization. We are
actually going to give some different versions algebraically equivalent when q �= 1 by ‘purely
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quantum’ isomorphisms. Note that for the quantum group Uq(su2) we use the standard
generators H,X± so that

q
H
2 X±q− H

2 = q±1X±, [X+, X−] = qH − q−H

q − q−1
, (31)

as well as

q± H
2 = q± H

2 ⊗ q± H
2 , X± = q− H

2 ⊗ X± + X± ⊗ q
H
2 .

The real form here is defined by H ∗ = H and X∗
± = X∓ at least for real q (the root of unity

case is more subtle). For its dual Cq[SU2] we use a matrix of generators t i j = (
a b

c d

)
, with its

usual relations

ba = qab, bc = cb, bd = q−1db,

ca = qac, cd = q−1dc, da = ad + (q − q−1)bc

and matrix form of coproduct. The real form is given by a∗ = d, b∗ = −q−1c for q real.
For our first version in figure 1, the form suggested by the classical geometry is the

quantum double viewed as

Uq(so1,3) = Uq(su2)��Uq(su
�
2),

where Uq(su
�
2)

∼= Cq[SU2]op with new generators ξ, x and y defined by(
a b

c d

)
=

(
qξ λy

λx q−ξ (1 + qλ2xy)

)
, λ = q−1 − q, (32)

and relations and coproduct that the reader can translate. For example, the relations here
are

[ξ, x] = x, [ξ, y] = y, [x, y] = 0, (33)

so as an algebra it is in fact U(su�
2), undeformed. This is the ‘purely quantum isomorphism’

on the lower left in figure 1, valid for q �= 1. Note that in this model the small deformation
parameter λ ≈ 2/(mplc) is, like q, dimensionless. The quantum double in this form is the
dual of the quantum group quantizing su2��su�

2 with its classical double Poisson Lie group
structure. There is a canonical action on Uq(su2)

cop = Uq−1(su2) with generators h, x±, say
(to distinguish from the previous ones) and relations with inverted q. This could serve as a
definition of Cq[SU�

2 ] as a noncommutative space with generators w and z defined via(
w z

0 w−1

)
=

(
q

h
2 q− 1

2 λx−
0 q− h

2

)
,

a matrix form of coalgebra and relations that the reader can translate from those of Uq(su2).
One needs the complex conjugate as an additional generator z∗ of Cq[SU�

2 ] to complete this
to a ∗-algebra along with w∗ = w as a real generator. This version of the model is a q-
deformation of the free particle on hyperbolic spacetime (the middle left model of figure 1,
section 3.4), with q-deformation the introduction of finite mp or the ‘switching on’ of mutual
gravitational interaction via the Newton constant G.

Next, as in the classical case, it is natural to define this q-hyperbolic space as the unit
mass hyperboloid of q-Minkowski space. The necessary q-Minkowski space is defined as the
coordinate algebra Bq[M2] of the space of 2 × 2 braided Hermitian matrices [11, 12]

βα = q2αβ, γ α = q−2αγ, δα = αδ,

[β, γ ] = (1 − q−2)α(δ − α), [δ, β] = (1 − q−2)αβ, [γ, δ] = (1 − q−2)γ α,
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(
α β

γ δ

)
=

(
α β

γ δ

)
⊗

(
α β

γ δ

)
,

ε

(
α β

γ δ

)
=

(
1 0
0 1

)
,

(
α β

γ δ

)∗
=

(
α γ

β δ

)
.

The coproduct here extends to products with braid statistics, much as for super-matrices but
with Bose–Fermi statistics replaced by a braiding matrix. If we quotient by the braided-
determinant relation αδ − q2γβ = 1 we have the unit hyperboloid in q-Minkowski space,
which is the coordinate algebra of the braided group Bq[SU2]. The q-determinant otherwise
defines a q-metric. When q �= 1 this algebra is more or less isomorphic to Uq(su2) as required
by means of the ‘quantum Killing form’, as(

α β

γ δ

)
=

(
w z

0 w−1

)∗ (
w z

0 w−1

)
=

(
qh q

−1
2 λq

h
2 x−

q
−1
2 λx+q

h
2 q−h + q−1λ2x+x−

)
in terms of our previous identification. This quantum Killing form can also be viewed more
categorically as essentially an isomorphism between the braided enveloping algebra BUq(su2)

(which has the same algebra as Uq(su2)) and its dual which is the braided function algebra
Bq[SU2].

For our second version of D(Uq(su2)) we come from the quantum double construction
rather than the classical version. So we work with D(Uq(su2)) = Uq(su2) �� Cq[SU2]op

acting likewise on Uq(su2)
cop viewed as Cq[SU�

2 ] or by preference as Bq[SU2]. Moreover, it
turns out to be very natural to replace Cq[SU2]op in the quantum double by another copy of
Bq[SU2] with matrix generators ui

j , say. Then one finds

D(Uq(su2)) ∼= Uq(su2) ·�<Bq[SU2],

which is then a semidirect product as an algebra and as a coalgebra, called the ‘bosonization’
of Bq[SU2] [12]. Here Uq(su2) acts on Bq[SU2] both as spacetime and as rotations by the
quantum coadjoint action. This form of the quantum double expresses the model as a q-
deformation of quantum gravity without cosmological constant in section 3.2, i.e. as purely
introducing the cosmological constant.

Finally, using this braided theory we are able better to understand our first version, as a
third formulation of the quantum double

Uq(so1,3) = Uq(su2)��Uq(su2),

which as an algebra is the tensor product one. This describes Uq(so1,3) as a complexification
of Uq(su2) and a further ‘twisting’ of the coproduct. This form of the quantum double follows
from the Uq(su2) ·�<BUq(su2) form (using the quantum Killing form isomorphism above)
and the fact that the semidirect product by the quantum adjoint action used for the algebra
structure can then be unravelled to a tensor product. This explains our two points of view
of the model as shown on the left side of the lower block in figure 1. They are isomorphic
provided q �= 1, a ‘purely quantum’ phenomenon.

3.7. Uq(so4)—semidual of quantum gravity with cosmological constant (Cq[SU2] spacetime)
and self-duality

The semidual of the preceding quantum double model has quantum group
Uq(su2)⊗ Uq(su2)

cop = Uq(so4) acting on the q-deformed space Cq[SU2]op. The action
here is by left and right differentials, i.e. by the coproduct of Cq[SU2] viewed as a left or
right coaction and evaluated against the two copies of Uq(su2). This version of the model
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exactly q-deforms the semidual of quantum gravity without cosmological constant based on
S̃O4 acting on SU2, i.e. it q-deforms the free particle on SU2 with cosmological constant (the
upper right of figure 1) with q-deformation introducing mutual gravitational interactions via
finite mp or non-zero Newton constant G.

Theorem 3.1. For generic q �= 1, or for the reduced theory at q a root of unity, quantum
gravity with cosmological constant as above is self-dual up to an algebraic equivalence under
semidualization. The algebraic equivalence is given by a quantum Wick rotation [36] or
‘transmutation’ from Cq[SU2]op to Bq[SU2] as spacetime algebra and a Drinfeld twist from
Uq(su2)��Uq(su2) to Uq(su2)⊗ Uq(su2)

cop as q-isometry group.

The Drinfeld twist needed is the composition of two; one to convert Uq(su2)
cop to Uq(su2)

and the second to convert Uq(su2)⊗ Uq(su2) over to Uq(su2)��Uq(su2). The Drinfeld twist
here conjugates the coproduct by a Hopf-cocycle. Its key feature is that it does not change
the category of modules up to a formal equivalence. More precisely, since in this form the
algebras of the two quantum groups are the same, their category of modules has the same
objects. Tensor products of two modules depend on the coproduct and these are related by a
twisting cocycle obtained from the braiding or ‘universal R-matrix’ of Uq(su2) (so the tensor
products are nontrivially isomorphic by this cocycle). Details were developed by one of the
authors in the early 1990s and are in [12] and elsewhere. To do this rigorously, however, one has
to look at the convergence of power series or work not over C but over the ring of formal power
series in the deformation parameter. The reader can also say quite rightly that the categories
of modules of U(so1,3) and U(so4) are quite different and cannot possibly coincide. Indeed,
the only difference in the classical case is the ∗-structure or unitarity constraint. However, in
the q-deformed theory Uq(so1,3) and Uq(so4) are different even as Hopf algebras and it is at
this algebraic level that we have the equivalence (i.e., not respecting the ∗-structures of the
quantum groups, which are not equivalent). Also, in physical terms the situation is actually
more precise when � > 0 i.e. when q is a complex number of modulus 1, and we look at the
truncated theory at q a root of unity. In this case, we must use finite ‘reduced’ versions of all
our algebras and have exact isomorphisms. Some theory of Cq[SU2] at q a root of unity is
in [37].

The specific twists here also have a deep braided category interpretation which is the
origin of the term ‘transmutation’. This theory converts ordinary quantum groups such
as Cq[SU2] into braided ones such as Bq[SU2] but in such a way that all of the theory
has braided parallels. In particular, there is also a braided version BUq(su2) of Uq(su2)

and the (essentially) isormorphism Bq[SU2] ∼= BUq(su2) has a categorical origin as braided
selfduality of such ‘factorizable’ quantum groups. Because of it, the braided Fourier transform
becomes an operator Bq[SU2] → Bq[SU2] which, together with left multiplication by the
ribbon element generates a representation of the mapping class group PSL(2, Z) [38]. This
representation is at the heart of the three-manifold invariant corresponding to the quantum
group Uq(su2). The same applied to D(Uq(su2)) is at the heart of the Turaev–Viro invariant,
i.e. of the solution of this part of 3D quantum gravity with cosmological constant. Moreover,
because the quantum gravity theory with point sources is controlled essentially by attaching
representations at the marked points of the Riemann surface as explained in section 2, the
semidual Uq(so4) theory has in some sense the same physical content up to the mentioned
(but non-trivial) isomorphisms.

Finally, using the dual of the ‘purely quantum isomorphism’ (32) we arrive at the other
version on the lower right of figure 1 with quantum isometry group Uq(su2)��Cq

[
SU�

2

]
,

isomorphic when q �= 1. We arrive this time at the q-deformation of the bicrossproduct model
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of section 3.5, so q-deformation is now interpreted once again as introducing the cosmological
constant.

3.8. Degenerations between the models

As indicated in figure 1 the various models as well as being related by semidualization
horizontally are related vertically by ‘deformation’ going downwards or, going the other way,
by degeneration. In this subsection, we explain these degeneration maps between the models.
The key observation is that the q-deformed models in sections 3.6 and 3.7 (the bottom of
figure 1) have only one parameter q which is dimensionless. However, the limit q → 1 can
be taken in different ways according to how the generators are scaled and this gives various
degenerations.

We start at the bottom left of figure 1, the dimensionless model of section 3.6.
For the rotational part of the isometry quantum group there is no problem and we set
Uq(su2) �→ U(su2) as q → 1. However, Uq(su2) is also the quantum spacetime algebra in
the model at the bottom left of figure 1, and here we must be more careful to write

H = 2mpx3, x± = mp(x1 ± ix2)

and then take the limit lc → ∞ in relations (31) of Uq(su2). We then obtain the spin model
spacetime of section 3.2 (the upper left of figure 1) with relations (27) for xa.

On the other hand, we can make use of the ‘purely quantum isomorphism’ (32) and set

ξ = −ilcP3, x = lc(P1 + iP2), y = −x∗

and then take the limit mp → ∞. We then obtain the momentum sector of the classical
hyberbolic spacetime model of section 3.4 (left middle of figure 1): relations (33) become the
relations for Pa in (29).

Similarly on the right-hand side of figure 1 starting at the bottom in the dimensionless
q-deformed theory of section 3.7, we can set q → 1 after identifying the q-bicrossproduct as
Uq(su2)⊗ Uq(su2)

cop. By setting q → 1 here and for the spacetime Cq[SU2]op we obtain the
particle on a 3-sphere in section 3.3 (upper right in figure 1). Finally, on the other side of the
‘purely quantum isomorphism’ (32) we can write

ξ = impx3, x = mp(x1 + ix2), y = −x∗,

and then take the limit lc → ∞ to obtain the bicrossproduct spacetime model of section 3.5
(right middle of figure 1): relations (33) turn into the spacetime algebra (30) for xa.

We have described here the degenerations at the level of spacetime and isometry algebras.
The same applies when one looks deeper into the noncommutative differential geometry of
the models. For example, the standard 4D bicovariant differential calculus on Cq[SU2]op

at bottom right degenerates to a 4D quantum-isometry covariant differential calculus on the
bicrossproduct spacetime. This will be given in detail elsewhere. The final degenerations
to the E3 model of section 3.1 at the top of the figure are obvious as the remaining mp or lc
parameter is set to infinity.

4. Physics of semiduality from spin spacetime to classical SU2

So far we have been describing our models in terms of the algebraic structure of isometry
(quantum) groups and their relation by semidualization. In this section we now look in detail
at the physics in the sense of the irreducible representations in these models, concentrating
on the upper part of our overview in figure 1. Our main motivation is to understand the
physical interpretation of semiduality, using the strategy outlined in section 1: by studying
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irreps of the isometry (quantum) groups and their semiduals, and using (quantum) Fourier
transforms to switch from momentum to position representation within one model we are
able to realize representations of mutually semidual (and generally non-equivalent) models in
terms of functions on the same (possibly noncommutative) space. An additional motivation
for studying irreps and their Fourier transforms comes from the role of quantum doubles in
the construction of the Hilbert space (18) of 3D quantum gravity, where the irreps represent
the one-particle contributions. While the literature on 3D quantum gravity has focussed on the
momentum space picture of those irreps, the (noncommutative) position picture may provide
insights into the interpretation of 3D quantum gravity in terms of noncommutative geometry.

We recall that semiduality maps the euclidean group E3 to itself (but exchanges momenta
and positions), whereas the quantum double D(U(su2)) (spin model) is mapped to the universal
enveloping algebra of so4 (S3 spacetime model). The case of E3 is thus exceptional in that
semiduality and Fourier transform coincide. We give the irreps of E3 both in terms of vector-
valued functions on momentum space satisfying a (multiplicative) spin constraint and in terms
of vector-valued functions on position space satisfying a Dirac-type linear first-order wave
equation; the two pictures are related via standard Fourier transform. This case is of course
the well-known Wigner construction but we present it in a geometrical form that is suitable
for deformation. For D(U(su2)) or more precisely D(SU2) in a global formulation, the irreps
are given precisely as a 1/mp-deformation of the E3 picture, both in terms of vector-valued
functions on curved momentum space SU2 satisfying a (multiplicative) group-valued spin
constraint cf [5] and in terms of noncommutative wave equations on fuzzy R

3 as in [3]. For
so4 the irreps are given in terms of vector-valued functions on curved position space SU2

satisfying a linear first-order differential equation, and, after quantum Fourier transform, in
terms of vector-valued functions on fuzzy momentum space satisfying an algebraic constraint.
We show that this, too, is a deformation of E3, this time recovered as lc → ∞. Thus we obtain
a precise dictionary between the physical pictures in the two non-trivial models. They are not
equivalent, but are both deformations of the same pictures in the E3 case.

4.1. Representations of E3

We first recall some standard facts and notations for su2 and its representations. We introduce
a set of Hermitian generators ta satisfying the standard commutation relations

[ta, tb] = ıεabctc

and given explicitly via ta = σa/2 in terms of Pauli matrices. We will denote the (2s + 1)-
dimensional irreducible representation of the Lie algebra su2 by ρs , where s ∈ 1

2 (N ∪ {0}). This
has a lowest weight vector which we will denote by |s,−s〉, where ρs(t3)|s,−s〉 = −s|s,−s〉
in our conventions. For s = 1 it will be convenient to consider the Cartesian basis, where

ρ1(ta)bc = −ıεabc, (34)

and for s = 1/2 it will be convenient to use the defining Pauli matrix representation
ρ1/2(ta) = ta = 1

2σa . We will also use the ta basis to identify su2 with R
3. However, all

of our constructions are basis independent.
The euclidean group E3 = SU(2) � R

3 was covered in section 3.1 and we use the
notations from there. In particular, recall that the translation part is identified with su∗

2, with
generators denoted by Pa so that a finite translation is written as a = −ıabPb. According
to the standard theory, irreps of E3 are labelled by SU(2) orbits in momentum space (su∗

2)
∗

together with irreps of associated centralizers. Since (su∗
2)

∗ = su2, momentum space is su2

and we could use the basis {ta}, but we need to be careful about normalization. As explained
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in section 3.1 the dual basis {P ∗
a } may have a different normalization from that of {ta}, which

is fixed by the commutation relations, so we should allow

P ∗
a = −λta, (35)

where λ is an arbitrary constant of dimension inverse mass. Thus we view su2 as momentum
space and denote elements as p, which we expand as

p = ıpaP
∗
a = −ıλpata (36)

if we wish to use an R
3 notation. We should stress that the parameter λ only enters the

discussion because we choose to work with the basis {ta} of momentum space; if we carried
out the analysis entirely in terms of the basis {P ∗

a } this parameter would not be required.
The irreducible representations of E3 are then labelled by adjoint SU2 orbits i.e. by

two-spheres S2
m = {vλmt3v

−1 | v ∈ SU2} in momentum space and irreducible unitary
representations �s of associated stabilizers Nm = {g ∈ SU2|gλmt3g

−1 = λmt3}. Clearly
N0 � SU2 and Nm � U(1) for all other values of m and s ∈ 1

2 (N ∪ {0}). The parameters m
and s are interpreted as (euclidean) mass and spin of a particle. In the generic case the carrier
spaces for the irreducible representations are

Vms = {ψ : SU2 → C | ψ(v eαıt3) eisαψ(v), ∀α ∈ [0, 4π), ∀v ∈ SU2}, (37)

whose elements also arise as sections of Dirac monopole bundles, and we therefore refer to
them as monopole sections. An element (g, a) ∈ E3 acts on a monopole section via

πms((g, a))ψ(v) = exp(ıma(Adg−1v(ıP
∗
3 )))ψ(g−1v). (38)

If we introduce the su2 element

p = ımvP ∗
3 v−1, (39)

the phase here could be written as

exp(ı �a · Adg−1( �p))

when both a and p are expanded in the mutually dual bases {−ıPa} and {ıP ∗
a }. For m = 0

the centralizer representations are SU2 representations. In the resulting finite-dimensional
representations of E3, the translations act trivially. We are not interested in the finite-
dimensional irreducible representations in the following.

Given ψ ∈ Vms define the map

φ̃ : S2
m → C

2s+1, (40)

where S2
m is the 2-sphere in su2 of radius λm, via

φ̃(p) = ψ(v)ρs(v)|s,−s〉, (41)

where p is related to v via (39). Clearly

ρs(v eαıt3)|s,−s〉 = ρs(v)ρs(eαıt3)|s,−s〉 = ρs(v) e−ıαs |s,−s〉
which cancels the phase picked up by ψ under the right-multiplication by eαıt3 . Hence φ̃ only
depends on p ∈ S2

m even though both ρs(v) and ψ depend on v.
The map φ̃ defined in (41) satisfies the constraint

(ρs(ta)pa + ms)φ̃ = 0. (42)

To see this, write (39) as pata = vmt3v
−1 so that

ρs(ta)paφ̃(p) = ρs(vmt3v
−1)ρs(v)ψ(v)|s,−s〉

= ψ(v)ρs(v)m(−s)|s,−s〉
= −msφ̃(p),
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as required. Conversely, any map φ̃ : S2
m → C

2s+1 satisfying this constraint can be written in
the form (41) with ψ ∈ Vms . Thus the field φ̃(p) is the monopole section corresponding to ψ

but written ‘downstairs’ on the base S2
m of the monopole bundle as a function with values in a

one-dimensional vector space within C
2s+1 that varies as we move about on the base, in other

words as an element in a rank 1 projective module. There is an associated projection matrix
at every point p ∈ Sm:

e(p) = ρs(v)|s,−s〉〈s,−s|ρs(v−1), (43)

with (39) assumed, which projects any φ̃ to a solution of our constraint, i.e. down to the
irreducible representation. Note that for s = 1/2 we have

e(p) = 1

2
+

tapa

m
, (44)

while for other spins the relationship is more complicated.
To obtain a unified description of all (infinite-dimensional) irreducible representations we

consider the union⋃
m∈R+

S2
m � R

3 \ {0}

and use the carrier space

Ws = {φ̃ : R
3 \ {0} → C

2s+1}
as a starting point for the representation theory of E3. The subspaces

Wms = {φ̃ : R
3 \ {0} → C

2s+1|(ρs(ta)pa + ms)φ̃ = 0}
obtained by imposing the constraint are representation of E3. In order to obtain an irrep as
before we may still need to impose an additional constraint

(p2 − m2)φ̃ = 0

although for spins 1/2, 1 this holds automatically. An element (g, a) ∈ E3 acts via

πms((g, a))φ̃(p) = eıa(Adg−1 p)ρs(g)φ̃(Adg−1p),

which commutes with the constraint (42), as required. The angle in the phase here is again
�a · Adg−1 �p in our chosen bases.

The advantage of working with the map φ̃ in this way is that it is defined on a linear space.
We can Fourier transform back to a field

φ(x) = 1√
(2π)3

∫
d3p eı�x· �pφ̃(p),

which turns the constraint (42) into the first-order differential equation

(ıρs(ta)∂a − ms)φ = 0. (45)

For s = 1
2 this is the Dirac equation

(ıσa∂a − m)φ = 0. (46)

Applying the adjoint Dirac operator iσa∂a + m we deduce

( + m2)φ = 0.

For s = 1 equation (45) takes the form

∇ × φ = −mφ, (47)
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where we used the Cartesian representation (34). Computing the divergence on both sides we
deduce ∇ ·φ = 0 and therefore, upon applying ∇× to both sides of (47),

( + m2)φ = 0.

To sum up, we obtain irreducible representations of E3 on the space of C
2s+1 valued

‘wavefunctions’ satisfying a first-order equation, which generalizes the Dirac equation

Wms = {φ : R
3 → C

2s+1| (ıρs(ta)∂a − ms)φ = 0},
at least for spin 1/2 and 1. For higher spins one may need to supplement with the usual wave
equation ( + m2)φ as for scalar fields. An element (g, a) ∈ E3 acts on a wavefunction via

πms((g, a))φ(�x) = ρs(g)φ(Adg−1(�x) − �a).

The infinitesimal generators Pa and Ja of translations and rotations act as

Pa = −ı
∂

∂xa

, Ja = −ıεabcxb

∂

∂xc

+ ρs(ta), (48)

so that �P · �J = −ıρs(ta)∂a is the Casimir used in the definition of Wms .

4.2. Representations of the quantum double D(SU2)

We now look similarly at the particle states in the quantum double ‘spin model’ related to
3D quantum gravity without cosmological constant. We will view the quantum double here
as a deformation of E3 [3, 5] as we explained in section 3.2, with a parameter λ = 8π/mp

in the quantum gravity application. Note that, with this choice for λ, relation (35) between
rotation and dual translation generators is the identification (13) of Ja with P ∗

a in terms of
the non-degenerate symmetric from used in the Chern–Simons action for 3D gravity. As we
shall see, the identification of P ∗

a with Ja (or ta), which was optional in the discussion of E3

representations, is essential in the following discussion of quantum double representations.
Our treatment is fully analogous to that of E3, including a physical interpretation as particles
of some kind with mass and spin.

We start with some remarks about the relevant quantum double. Indeed, the required
quantum double of a compact Lie group G has been studied in various publications and
can be defined as a particular Hopf C∗-algebra. However, its formulation as such is quite
technical and in practice one can take either a ∗-algebraic approach in terms of generators
and relations, or much as in physics one can work at the Lie algebra level in practice. Thus,
D(U(g)) = U(g)�<C[G] where U(g) denotes the enveloping algebra of the Lie algebra
of ‘rotations’ (in our application) and C[G] an algebra of coordinates in momentum space
G. The semidirect product is by the right adjoint action and in the case of SU2 the required
structure was given in section 3.2 as derived in [3]. Note, however, that group elements do not
themselves lie in U(g) but in a completion, i.e. have to be approximated.

The more technical C∗ approach makes use of a crossproduct C∗(G)�<C(G) of the group
C∗-algebra and the C∗-algebra of continuous functions on G. The former is defined first by a
convolution product of functions of compact support and then completed. A closely related
approach [39] is to start with continuous functions on G × G with convolution on the first
factor (note that we exchange the roles played by the two copies of G in order to match our
conventions for the semidirect product group E3). In these approaches one obtains eventually
a Hopf C∗-algebra D(G) but one still has to approximate the actual elements of the ‘rotation
group’ copy of G since these would appear as δ-functions in the convolution algebra. If we
allow these for purposes of writing simple formulae, we have multiplication •, identity 1,

29



J. Phys. A: Math. Theor. 42 (2009) 425402 S Majid and B J Schroers

co-multiplication , co-unit ε, antipode S and involution ∗ via

(F1 • F2)(g, u) :=
∫

G

F1(z, zuz−1) F2(z
−1g, u) dz,

1(g, u) := δe(g),

(F)(g1, u1; g2, u2) := F(g1, u1u2) δg1(g2).

ε(F ) :=
∫

G

F(g, e) dg,

(SF )(g, u) := F(g−1, g−1u−1g),

F ∗(g, u) := F(g−1, g−1ug),

or, entirely in terms of δ-functions,

(δg1 ⊗ f1) • (δg2 ⊗ f2) = δg1g2 ⊗ f1(g2( )g−1
2 )f2

(δg ⊗ f )(g1, u1; g2, u2) = δg(g1)δg(g2)f (u1u2)

ε(δg ⊗ f ) = f (e)

S(δg ⊗ f ) = δg−1 ⊗ f (g−1()−1g),

(δg ⊗ f )∗ = δg−1 ⊗ f ∗(g−1()g).

In the following, we will use both the algebraic and the group convolution formulations. In
the latter form it is less easy to take the limit to E3 but see [5].

The momentum space is now the curved space S3 = SU2 with ‘translation Hopf algebra’
given by functions C(SU2). It acts on another copy of C(SU2), functions on momentum
space, by pointwise multiplication. In a suitable formulation, the irreducible representations
of D(SU2) are labelled by the SU2-conjugacy classes Cm = {v eımλt3v−1 | v ∈ SU2} in the
momentum space SU2 and irreducible unitary representations �s of associated stabilizers
Nm = {g ∈ SU2|g eımλt3g−1 = eımλt3} [39]. Note that C0 = {1} and C2π/λ = {−1} and that all
the other conjugacy classes are isomorphic to 2-spheres in the Lie algebra coordinate system,
namely | �p| = m. Clearly N0 � N2π/λ � SU2 and Nm � U(1) for generic values of m. In the
generic case the carrier spaces for the irreducible representations are

Vms = {ψ : SU2 → C | ψ(v eıαt3) eısαψ(v), ∀α ∈ [0, 4π), v ∈ SU2}. (49)

These are the same spaces of monopole sections as before for E3. An element F ∈ D(SU2)

acts via

�ms(F )ψ(v) =
∫

dg F(g, g−1v eımλt3v−1g)ψ(g−1v).

The singular elements have the simple action

�ms(δg ⊗ f )ψ(v) = f (g−1v eımλt3v−1g)ψ(g−1v).

As for E3 we can alternatively use carrier spaces which are spaces of vector-valued functions
satisfying a constraint. Again we switch from the function ψ ∈ Vms to the vector-valued
function defined as in (40) by

φ̃(u) = ρs(v)ψ(v)|s,−s〉, (50)

where now u = veımλt3v−1 ∈ Cm. They are spaces of sections of a monopole bundle over Cm

with projection

e(u) = ρs(v)|s,−s〉〈s,−s|ρs(v−1)
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as before but now with the 2-sphere viewed as a conjugacy class Cm ⊂ SU2 rather than as an
orbit in su2. The functions (50) satisfy the group-valued analogue of the constraint (42),

ρs(u)φ̃(u) = e−ımλs φ̃(u), (51)

as one can check by an analogous calculation to the one carried out after (42).
For a unified description we now foliate S3 = SU2 as⋃

m∈(0,2π/λ)

S2
m � SU2 \ {1,−1}.

Geometrically, SU2 \ {1,−1} is the 3-sphere without north and south poles, which we denote
S3

NS . We define the space

W 1
s = {

φ̃ : S3
NS → C

2s+1}, (52)

and impose a group-valued constraint (51). Then we obtain representations of D(SU2) on the
spaces

Wms = {
φ̃ : S3

NS → C
2s+1|ρs(u)φ̃(u) = e−ımλs φ̃(u)

}
, (53)

essentially as before, while to obtain an irrep we may still have to impose a constraint that φ̃

has support on Cm (we will give this in a different coordinate system shortly). For spins 1/2
and 1 this is automatic. The action of D(SU2) is most easily expressed in terms of the singular
elements:

�ms(δg ⊗ f )φ̃(u) = f (g−1ug)ρ(g)φ̃(g−1ug).

In the case of the euclidean group we were able to apply a Fourier transform to obtain
irreducible representations in terms of functions obeying a differential equation. We can do
just the same in the non-Abelian case provided we use the modern tools of quantum group
Fourier transform [3, 18, 19, 35]. If φ̃ is a function on SU2 we Fourier transform it to one on
the noncommutative space U(su2) of the spin-model spacetime by

φ(x) =
∫

SU2

d3p J( �p) φ̃( �p)ψ �p(x),

using the noncommutative plane waves

ψ �p(x) = eı �p·�x

in [3]. Here x1, x2 and x3 are the generators of U(su2) with the commutation relations (27)
discussed in section 3.2, and d3pJ( �p) is the Haar measure on SU2 in the Lie algebra coordinate
system. The orbit spheres in these notations are

Cm = {eıλ �p·�t | | �p| = m}
so m = | �p| defines the sphere, or equivalently

P0 = cos(mλ/2)

in our global coordinates (P0,P1,P2,P3) of section 3.2 and in a patch where P0 � 0.
Converting to the corresponding u provides the additional restriction on the spaces Wms

mentioned above as(
1
2 Tr(u) − cos(mλ/2)

)
φ̃ = 0.

Next, for spin 0 the constraint (51) on the field φ̃ is empty as before and we have to separately
impose the Cm relation as discussed,

P0φ̃ = cos(mλ/2)φ̃.
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Under Fourier transform, multiplication by P0 becomes 1 − ı λ
2 ∂0 =

√
1 + λ2

4  in terms of the
noncommutative partial derivatives on the noncommutative spacetime. These were introduced
in [3] but see also [19, 35] (but note the use of λ there in the role of λ/2 in our conventions).
All we need to know about the noncommutative differentials ∂a for the present purposes is
that they diagonalize the noncommutative plane waves ψ �p(x) with eigenvalues ıPa . Here
 = ∂a∂

a is the noncommutative Laplace operator. So the noncommutative scalar wave
equation is (

 +

(
sin(mλ/2)

λ/2

)2)
φ = 0.

This agrees with [3] for a suitable interpretation of the effective mass.
For spin 1/2 the constraint (51) is

e
ı
2 �p·�σ φ̃ = e− ı

2 mλφ̃.

Using our global coordinates, this comes out as(
P0 + ı

λ

2
�P · �σ

)
φ̃ = e− ı

2 mλφ̃

Squaring, using the identity P2
0 + λ2

4
�P2 = 1 and the constraint equation again to replace ı �P · �t ,

gives the Cm relations (so these do not need to be imposed separately). Next, using these
relations we have

cos(mλ/2)φ̃ + ı
λ

2
�P · �σ φ̃ = (cos(mλ/2) − ı sin(mλ/2))φ̃

and cancel to obtain(
�P · �σ +

sin(mλ/2)

λ/2

)
φ̃ = 0

as the noncommutative Dirac equation in momentum space. This equation squares to give
�P2 = sin2(mλ/2)

λ2/4 which is equivalent to the Cm relation so this is all we need to impose to obtain
the irreducible representation. The equation after Fourier transform becomes(

ı�∂ · �σ − sin(mλ/2)

λ/2

)
φ = 0

as the noncommutative Dirac operator for the spin model. This agrees with [3] for our
interpretation of the effective mass.

For spin 1, we use the adjoint representation of SU2. The constraint equation (51) is linear
in φ̃ so we can use any basis we choose and here we choose the Cartesian one and accordingly
work with φ̃ · �σ . Then the constraint equation becomes(

P0 + ı
λ

2
�P · �σ

)
φ̃ · �σ

(
P0 − ı

λ

2
�P · �σ

)
= e−ımλφ̃ · �σ

or(
P2

0φ̃ · �σ + ı
λ

2
P0[ �P · �σ , φ̃ · �σ ] +

λ2

4
�P · �σ(φ̃ · �P + ıφ̃ × �P · �σ)

)
= e−ımλφ̃ · �σ ,

which comes out as(
1 − λ2

2
�P2

)
φ̃ − λP0 �P × φ̃ +

λ2

2
( �P · φ̃) �P = e−ımλφ̃.

We apply �P · ( ) to both sides and conclude that

�P · φ̃ = 0.
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In spacetime this becomes �∂ · φ = 0 in terms of the noncommutative partial derivatives. The
constraint equation meanwhile reduces to(

2P2
0 − 1 − e−ımλ

)
φ̃ = λP0 �P × φ̃

on replacement of 1 − λ2

2
�P2

. Applying �P× to this gives(
2P2

0 − 1 − e−ımλ
) �P × φ̃ = 4

λ
P0

(
P2

0 − 1
)
φ̃

on the same replacement. Eliminating �P × φ̃ between these equations gives an equation for
P0 on φ̃ which turns out to be our Cm relation in the wave operator form. Finally, going back
to what remained of our constraint equation and replacing P2

0 = cos2(mλ/2) gives

�P × φ̃ − ı
sin(mλ/2)

λ/2
φ̃ = 0

which together with our divergence condition provides the full content of the constraint
equation (one may square it to get the Cm relation once again). Applying the Fourier transform
gives

�∂ × φ +
sin(mλ/2)

λ/2
φ = 0

as our spin 1 wave equation, in agreement with [3] in the massless case discussed there.
Note that in all these equations, in momentum space the equations in terms of the Lie

coordinates �p become the same as in the E3 case, since the Lie and global coordinates are
related by rescaling with sin(mλ/2)

mλ/2 , where m = | �p|. However, in the noncommutative geometry
of U(su2) it is Pa that appear as the natural partial derivatives, see [3, 35].

4.3. Representations of SU2 × SU2

In this section, we show that the space (52) with a differential instead of a multiplicative
constraint also carries all the irreducible representations of SU2 × SU2. This is the semidual
model to the D(SU2) model of the preceding section but we shall see that the irreps have a
parallel construction. We denote the generators of the two copies of su2 by JL

a and JR
a ; the

Lie brackets are, in our conventions (A.1),[
JL

a , JL
b

] = ıεabcJ
L
c ,

[
JR

a , JR
b

] = ıεabcJ
R
c ,

[
JL

a , JR
b

] = 0. (54)

The irreps of this Lie algebra are well known to be labelled by two non-negative half-integer
spins, which we call k and l, and to have dimension (2k + 1)(2l + 1). There are two Casimirs

(JR)2 =
3∑

a=1

(JR
a )2 and (J L)2 =

3∑
a=1

(
JL

a

)2
,

which take the following values on the irreps

(JR)2 = k(k + 1), (J L)2 = l(l + 1), k, l ∈ 1
2 (N ∪ 0). (55)

We first show that one may realize these operators and their eigenvalues on the space

Ws = {φ̃ : S3 → C
2s+1}

of all C
2s+1-valued functions on S3. As before, we let ρs be the spin s representation so that

(ρs(t))2 := ∑3
a=1 ρs(ta)ρ

s(ta) has eigenvalue s(s + 1). We define actions of the generators
on Ws as

JL
a = ıξL

a + ρs(ta), J R
a = ıξR

a , (56)
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where ξL
a and ξR

a are the left- and right-generated vector fields associated with the generators
ta of su2 as defined in (A.2). Squaring, we note that

(J L)2 = (JR)2 + 2ıξL
a ρs(ta) + s(s + 1)

so that (55) becomes

(JR)2φ = k(k + 1)φ, φ ∈ Ws (57)

and, with l = s + k,(
ıξL

a ρs(ta) − ks
)
φ = 0, φ ∈ Ws. (58)

This is our ‘wave equation’ in mathematical terms, i.e. we obtain a representation on

Wks = {
φ : S3 → C

2s+1
∣∣ (ıξL

a ρs(ta) − ks
)
φ = 0

}
by imposing this constraint. We still need to impose the condition (57) separately in order
to obtain an irrep, although this is automatic for spin 1/2 and 1 as we shall see shortly. The
reason that we then obtain irreps is as follows. We start with the Peter–Weyl decomposition
of C(SU2) (or rather L2 in a Hilbert space context) in terms of matrix elements of irreps Vk of
SU2. This decomposes the function space into irreducible blocks Vk ⊗ V ∗

k where JL, JR act
on the left and right factors, respectively. This is the decomposition provided by the ‘wave
equation’

((ξR)2 + k(k + 1))φ = 0 (59)

on scalar fields (the Laplace–Beltrami equation on S3). Now in our case we have C
2s+1-valued

fields,

Ws = C
2s+1 ⊗(⊕k(Vk ⊗ V ∗

k )) = ⊕k(C
2s+1 ⊗ Vk)⊗ V ∗

k

where JR acts on V ∗
k as before and JL acts on C

2s+1 ⊗ Vk . The former is an irrep of SU2 but
the latter is not. The constraint (58) picks out an irrep of total spin l = s + k within it. Hence
it picks out a block Vl ⊗ V ∗

k within Ws as isomorphic to our constrained function space Wks if
we also impose (59). Hence these are indeed irreps and of the expected size.

It is again interesting to investigate the constraint (58) for low values of s. For s = 1
2 we

obtain

ıσaξ
L
a φ = kφ. (60)

Applying −ıσaξ
L
a to both sides gives(−(JR)2 + iσaξ

L
a

)
φ = −ıkσaξ

L
a φ

or (59).
For s = 1 we again use the Cartesian representation (34) to obtain

εabcξ
L
a φc = kφb. (61)

Acting with ξL
b and summing over c gives

− 1
2εabc

[
ξL
a , ξL

b

]
φc = kξL

c φc ⇔ −ξL
c φc = kξL

c φc.

Since k > 0 we conclude

ξL
c φc = 0.

Applying εdebξ
L
d to both sides of (61) now gives

(JR)2φe + ξL
d ξL

e φd = k2φe.

Now use

ξL
d ξL

e φd = ξL
e ξL

d φd +
[
ξL
d , ξL

e

]
φd = −kφe
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to conclude (59) again. Thus, like in the euclidean case, only the linear constraint (58) needs
to be imposed for s = 1

2 and s = 1.
This concludes our wave-equation picture of the representation theory at a mathematical

level. In terms of physical variables we can understand the above as follows. We again use a
parameter λ in parametrizing the SU2 where the fields live, but note that this is now position
space and that the value of the parameter in our physical picture is now λ = 1/lc. This is the
semidual of the model in the preceding section but like that one, it is a (different) deformation
of the self-dual E3 model, recovered as λ → 0.

Let us note first of all that the actual semidual, as explained in section 3.3, is SU2�<SU2

by the right adjoint action, which is isomorphic to the above group SU2 × SU2. Denoting the
generators of the former by Ja, Pa for the two copies respectively, their commutation relations
were given in (28) and their relations to the generators (54) are

Pa = λJR
a , Ja = JR

a + JL
a or JL

a = Ja − Pa

λ
, JR

a = Pa

λ
.

The physical Casimirs are

P 2 = λ2(JR)2, C = �p · �j − λ

2
J 2 = λ

2
((JR)2 − (J L)2).

As before, we use the same relations with pa in place of Pa when we refer to the
(noncommutative) momentum space with these as coordinates.

With the definitions (56), the action of the angular momentum Ja on the space Ws is

Ja = ıAda + ρs(ta),

where Ada = ξL
a + ξR

a is the adjoint action as a vector field on the group in terms of vector
fields for the left and right action (A.2) on SU2 = S3. This becomes the usual orbital angular
momentum on R

3 in the limit λ → 0. The action of Pa is

Pa = ıλξR
a

and the associated Casimir is the Laplace–Beltrami operator on S3. Its eigenvalues (the squared
mass of the particle) are, according to (59), given by

P 2φ = λ2k(k + 1)φ, (62)

so essentially m = λk is the mass of the particle.
Next, a short computation gives

C = −ıλξL
a ρs(t)a − λ

2
s(s + 1).

In line with what we have done before, we therefore impose a suitable value of this as a further
‘wave operator’ to obtain representations of SU(2) × SU(2) on the spaces

Wks =
{
φ : S3 → C

2s+1

∣∣∣∣ ( �P · �J − λ

2
J 2 + λks +

λ

2
s(s + 1)

)
φ = 0

}
,

which are irreps at least for spin 1/2 and spin 1. For higher spin we need to impose (59) as
well. Taking the limit λ → 0 while keeping the mass m = λk fixed reproduces the constraint
(45) in euclidean space, as required.

Note that these computations are done in position space. In terms of our previous
exposition, we have gone from noncommutative momentum space (functions of pa) to position
space (functions on SU2) again by means of the quantum group Fourier transform, this time
read the other way. The only fact we need to know is that left multiplication by pa becomes
the vector field −ıξL

a while right-multiplication by pa becomes the vector field ıξR
a . If one
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wants to do things in the noncommutative momentum space then the constraint (58) appears
as

(ρs(ta)pa + ms)φ̃( �p) = 0.

We distinguish here between the generators Pa of the isometry group and the noncommutative
coordinates pa on momentum space. They are both copies of the scaled su2 Lie algebra
relations as stated for Pa above.

Note that our ‘orbits’ or conjugacy classes in momentum space still exist as before, but
now as ‘fuzzy spheres’ of radius m = λk in this momentum space instead of usual spheres
as for the E3 model. It is known how to construct monopole sections in this context (as
projective modules) but we are not aware of a full analogue of the Hopf fibration itself, hence
the ‘upstairs’ point of view with field ψ as in (49) requires further elaboration using methods
of noncommutative geometry. The downstairs picture of the monopole sections is defined for
s = 1/2 by projections

e( �p) = k + 1

2
(
k + 1

2

) +
taPa

λ
(
k + 1

2

) .

One can check that e2 = e using the Pa commutation relations (28) and the constraint (62).
As λ → 0 and k → ∞ with m = λk fixed we see that we recover the standard monopole
projector given in (44).

5. Discussion

We have seen that the ‘particle content’ in the E3 flat spacetime model can be deformed
in two ways, one with the mass m ‘compressed’ by the sine function as momentum space
is compactified to SU2 but otherwise similar (the spin model) and the other with mass m
discretized in units of λ due to a fuzzy sphere in momentum space (the SU2 × SU2 model).
Thus although the physical parameters for the irreps in the two models are very different the
actual constructions of the irreps are similar and in some sense the physical states ‘correspond’
through their common limit (i.e. with arbitrary accuracy as the relevant λ → 0) even though
they are different. This is the ‘remnant’ of the self-duality in the degenerate cases that we
have looked at (the upper part of figure 1).

This picture also applies elsewhere in figure 1 and can, in principle, be developed entirely
analogously. Thus the SL2(C) model of section 3.4 is similar in principle to the SU2 × SU2

model of section 4.3 while its semidualization is the bicrossproduct model. Its representation
theory, as a semidirect product algebra, is readily developed in the same manner as for
the quantum double in section 4.2. The difference is that the adjoint action is replaced by
a nonlinear action deforming it as we have explained in section 3.5. In both cases we have
complications due to the non-compactness. The ‘quantum gravity with cosmological constant’
case of section 3.6 can similarly be developed—with a lot more effort—as a q-deformation of
section 4.2. Here again we see that the irreps on one hand are those of quantum SL2(C) and
on the other hand in the semidual model, they are irreps of quantum SU2 ×SU2—described by
the same parameters as in the non-q-deformed case and with the same features of continuous
and discrete parameters being ‘matched’ in a limiting sense. How this proceeds given that
the signatures (expressed in the ∗-structures) are very different remains to be seen. Roughly
speaking, we expect that the algebraic equivalence of categories ignoring the ∗-structures
explained in section 3.6 is complemented by two different ‘cross sections’ consisting of the
unitary irreps in each model, and that these slices are in some sense ‘transverse’.

We can gain some insight again from the simplest E3 case. Thus here on one hand we
have irreps of E3 constructed as monopole sections over spheres and a dual model in which the
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irreps are constructed by wave equations in R
3. In a fixed point of view these are respectively

momentum and position space treatments but from the point of view in which each theory
is considered the primary one, they are both (say) position space representations. Thus we
consider functions φ(�x) with values in C

2s+1 and consider both our possible constraints as two
different physical models on this position space R

3. One is related to the operator ρs(ta)∂a

and the other to the operator ρs(ta)xa . It is interesting to note that for s = 1/2 these two are
closely related to the Riemannian geometry of the sphere. Thus,

[�t · �x,�t · ∇] = ıt · (�x × ∇) − 3
4 ,

using elementary properties of the Pauli matrices. Now the expression on the right is essentially
a massive Dirac operator on a sphere S2 with its standard Riemannian metric. (It commutes
with x2 and hence defines an operator on C

2-valued functions on the sphere.) Thus Riemannian
geometry arises here out of the interaction of the system and the dual system. Also, we see
that our two operators form some kind of ‘Heisenberg pair’ with the curved Dirac operator
in the role of Planck’s constant. In this sense, our two methods of extracting irreps of E3 are
‘transverse’ and describe different physics if one views both in position space, in the sense
that one cannot simultaneously restrict to both: restricting to an irrep in one point of view
should typically have inner products with all the irreps in the other point of view. We expect
that this is part of the story for the full quantum gravity case.

Appendix. Vector fields and forms on Lie groups

Here we collect some facts about forms and vector fields on an n-dimensional Lie group G,
which are used in the main text. In order to simplify notation we assume G to be a matrix
group. We write g for the Lie algebra of G and work with generators for which the structure
constants are purely imaginary. With the notation ta, a = 1, . . . , n, for the generators the Lie
brackets take the form

[ta, tb] = ıf c
abtc, (A.1)

where f c
ab are real and we use the convention that repeated indices are summed over. It

follows that the structure constants are f c
ab in terms of the ‘real’ generators −ıta; the reader

may find it useful to read some of the geometrical formulae in this paper in terms of these
generators. Associated with the generators ta we have the left-generated vector fields ξL

a and
the right-generated vector fields ξR

a , defined via

ξL
a f (g) = d

ds

∣∣∣∣
s=0

f (eısta g), ξR
a f (g) = d

ds

∣∣∣∣
s=0

f (g e−ısta ). (A.2)

They close under the Lie bracket of vector fields and give two commuting copies of g:[
ξL
a , ξL

b

] = f c
abξ

L
c ,

[
ξR
a , ξR

b

] = f c
abξ

R
c ,

[
ξL
a , ξR

b

] = 0

Using the matrix structure of G we can identify TgG with matrices of the form gξ , where ξ ∈ g,
or with matrices of the form ξg. Then we can also write

ξL
a (g) = ıtag, ξR

a (g) = −ıgta. (A.3)

Using either of the definitions (A.2) and (A.3) it is easy to see that the left-generated vector
fields are invariant under the right action Rh : g �→ gh of G on itself (and hence on T G) and
that the right-generated vector fields are invariant under the left-action Lh : g �→ hg of G on
itself. We have the following relation between left- and right-generated vector fields:

(LgRg−1)′(ξL
a (g) = −ξR

a (g).
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With the abbreviation

Ad(g)(ta) = gtag
−1 = Rb

a(g)tb

it follows that

ξR
a (g) = −Rb

a(g)ξL
b (g).

There is as basis of 1-forms dual to the above vector fields which can be obtained by expanding
the Maurer–Cartan form

θ = g−1 dg.

The Maurer–Cartan form is Lie-algebra valued and manifestly left-invariant. Expanding in
the Lie algebra basis ta, a = 1, . . . , n, we obtain a basis σR,a of left-invariant 1-forms

g−1 dg = −ıtaσ
R,a. (A.4)

The 1-forms σR,a are dual to the left-invariant (and right-generated) vector fields ξR
a :

σR,a
(
ξR
b

) = δa
b.

We obtain right-invariant 1-forms σL
a by expanding

− g d(g−1) = dg g−1 = ıtaσ
L,a (A.5)

with the duality relation

σL,a
(
ξL
b

) = δa
b.

Comparing (A.4) with (A.5) we have the relation

σL,a = −Ra
bσ

R,b.

Since the Maurer–Cartan form satisfies

dθ + θ ∧ θ = 0

we deduce

dσR,a = − 1
2f a

bcσ
R,b ∧ σR,c

and by a similar argument

dσL,a = − 1
2f a

bcσ
L,b ∧ σL,c.

We note that every compact Lie group has a bi-invariant Riemannian metric. In terms of the
1-forms introduced above it can be written as

ds2 = κabσ
R,aσR,b = κabσ

L,aσL,b, (A.6)

where κ is the Killing form on the Lie algebra i.e.

κab = −tr(ad(ta)ad(tb)).

The Laplace operator associated wih this metric can be written in terms of the inverse metric
κab and either the left- or right-generated vector fields as

κabξR
a ξR

b = κabξL
a ξL

b . (A.7)

Finally, although the tangent bundle of any Lie group is isomorphic to the trivial bundle
G× g, this is not canonical in the sense that we can use either the left- or the right-translations
to trivialize the bundle. In the left-trivialization, gξ ∈ TgG is identified with ξ ∈ g. In
the right-trivialization ξg ∈ TgG is identified with ξ ∈ g. Both left- and right-translation
can also be used to define a connection on T G. Both the connections are flat. In the
left-trivialization, the connection defined by the left-translation has the covariant derivative
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DL = d. The right-translation has the covariant derivative DR = d + g−1 dg. Note that
D2

R = 0, as required for flatness. The Levi-Civita connection (unique torsion free connection
which preserves the Killing metric (A.6) turns out to be the average of the connection for
the left- and right-translation. In the left-trivialization the Levi-Civita connection 1-form
is therefore ALC + 1

2g−1 dg, leading to the covariant derivative DLC = d + 1
2g−1 dg. The

Levi-Civita connection is not flat. Its curvature is

FLC = d
(

1
2g−1 dg

)
+ 1

4g−1 dg ∧ g−1 dg = − 1
4g−1 dg ∧ g−1 dg.
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Phys. Lett. B 334 348–54

[9] Lukierski J, Nowicki A, Ruegg H and Tolstoy V N 1991 q-Deformation of Poincaré algebra Phys. Lett. B 268
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